Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
import nltk
|
3 |
-
nltk.download('
|
4 |
-
from
|
5 |
-
|
6 |
-
|
7 |
-
TEXT_SOURCE_LANGUAGE_NAMES,
|
8 |
-
)
|
9 |
-
DEFAULT_TARGET_LANGUAGE = "English"
|
10 |
-
from transformers import SeamlessM4TForTextToText
|
11 |
-
from transformers import AutoProcessor
|
12 |
-
model = SeamlessM4TForTextToText.from_pretrained("facebook/hf-seamless-m4t-medium")
|
13 |
-
processor = AutoProcessor.from_pretrained("facebook/hf-seamless-m4t-medium")
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
def split_text_into_batches(text, max_tokens_per_batch):
|
21 |
sentences = nltk.sent_tokenize(text) # Tokenize text into sentences
|
@@ -31,93 +27,88 @@ def split_text_into_batches(text, max_tokens_per_batch):
|
|
31 |
batches.append(current_batch.strip()) # Add the last batch
|
32 |
return batches
|
33 |
|
34 |
-
def
|
35 |
if file_uploader is not None:
|
36 |
-
with open(file_uploader,
|
37 |
-
input_text=file.read()
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
batches = split_text_into_batches(input_text, max_tokens_per_batch)
|
42 |
translated_text = ""
|
|
|
43 |
for batch in batches:
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
_output_name = "result.txt"
|
50 |
-
open(_output_name,
|
51 |
-
|
52 |
|
53 |
-
|
|
|
|
|
|
|
54 |
with gr.Row():
|
55 |
with gr.Column():
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
69 |
-
)
|
70 |
btn = gr.Button("Translate")
|
71 |
with gr.Column():
|
72 |
-
output_text = gr.Textbox(label="Translated text")
|
73 |
output_file = gr.File(label="Translated text file")
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
[
|
78 |
-
None,
|
79 |
-
"The sinister destruction of the holy Akal Takht and the ruthless massacre of thousands of innocent pilgrims had unmasked the deep-seated hatred and animosity that the Indian Government had been nurturing against Sikhs ever since independence",
|
80 |
-
"English",
|
81 |
-
"Punjabi",
|
82 |
-
],
|
83 |
-
[
|
84 |
-
None,
|
85 |
-
"It contains. much useful information about administrative, revenue, judicial and ecclesiastical activities in various areas which, it is hoped, would supplement the information available in official records.",
|
86 |
-
"English",
|
87 |
-
"Hindi",
|
88 |
-
],
|
89 |
-
[
|
90 |
-
None,
|
91 |
-
"दुनिया में बहुत सी अलग-अलग भाषाएं हैं और उनमें अपने वर्ण और शब्दों का भंडार होता है. इसमें में कुछ उनके अपने शब्द होते हैं तो कुछ ऐसे भी हैं, जो दूसरी भाषाओं से लिए जाते हैं.",
|
92 |
-
"Hindi",
|
93 |
-
"Punjabi",
|
94 |
-
],
|
95 |
-
[
|
96 |
-
None,
|
97 |
-
"ਸੂੂਬੇ ਦੇ ਕਈ ਜ਼ਿਲ੍ਹਿਆਂ ’ਚ ਬੁੱਧਵਾਰ ਸਵੇਰੇ ਸੰਘਣੀ ਧੁੰਦ ਛਾਈ ਰਹੀ ਤੇ ਤੇਜ਼ ਹਵਾਵਾਂ ਨੇ ਕਾਂਬਾ ਹੋਰ ਵਧਾ ਦਿੱਤਾ। ਸੱਤ ਸ਼ਹਿਰਾਂ ’ਚ ਦਿਨ ਦਾ ਤਾਪਮਾਨ ਦਸ ਡਿਗਰੀ ਸੈਲਸੀਅਸ ਦੇ ਆਸਪਾਸ ਰਿਹਾ। ਸੂਬੇ ’ਚ ਵੱਧ ਤੋਂ ਵੱਧ ਤਾਪਮਾਨ ’ਚ ਵੀ ਦਸ ਡਿਗਰੀ ਸੈਲਸੀਅਸ ਦੀ ਗਿਰਾਵਟ ਦਰਜ ਕੀਤੀ ਗਈ",
|
98 |
-
"Punjabi",
|
99 |
-
"English",
|
100 |
-
],
|
101 |
-
],
|
102 |
-
inputs=[file_uploader ,input_text, source_language, target_language],
|
103 |
-
outputs=[output_text, output_file],
|
104 |
-
fn=run_t2tt,
|
105 |
-
cache_examples=False,
|
106 |
-
api_name=False,
|
107 |
-
)
|
108 |
-
|
109 |
-
gr.on(
|
110 |
-
triggers=[input_text.submit, btn.click],
|
111 |
-
fn=run_t2tt,
|
112 |
inputs=[file_uploader, input_text, source_language, target_language],
|
113 |
outputs=[output_text, output_file],
|
114 |
-
api_name="t2tt",
|
115 |
)
|
116 |
|
117 |
-
with gr.Blocks() as demo:
|
118 |
-
with gr.Tabs():
|
119 |
-
with gr.Tab(label="Translate"):
|
120 |
-
demo_t2tt.render()
|
121 |
-
|
122 |
if __name__ == "__main__":
|
123 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import nltk
|
3 |
+
nltk.download('punkt_tab')
|
4 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
5 |
+
from IndicTransToolkit.IndicTransToolkit import IndicProcessor
|
6 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Load IndicTrans2 model
|
9 |
+
model_name = "ai4bharat/indictrans2-indic-indic-dist-320M"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True)
|
12 |
+
ip = IndicProcessor(inference=True)
|
13 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
model.to(DEVICE)
|
15 |
|
16 |
def split_text_into_batches(text, max_tokens_per_batch):
|
17 |
sentences = nltk.sent_tokenize(text) # Tokenize text into sentences
|
|
|
27 |
batches.append(current_batch.strip()) # Add the last batch
|
28 |
return batches
|
29 |
|
30 |
+
def run_translation(file_uploader, input_text, source_language, target_language):
|
31 |
if file_uploader is not None:
|
32 |
+
with open(file_uploader.name, "r", encoding="utf-8") as file:
|
33 |
+
input_text = file.read()
|
34 |
+
|
35 |
+
# Language mapping
|
36 |
+
lang_code_map = {
|
37 |
+
"Hindi": "hin_Deva",
|
38 |
+
"Punjabi": "pan_Guru",
|
39 |
+
"English": "eng_Latn",
|
40 |
+
}
|
41 |
+
|
42 |
+
src_lang = lang_code_map[source_language]
|
43 |
+
tgt_lang = lang_code_map[target_language]
|
44 |
+
|
45 |
+
max_tokens_per_batch = 256
|
46 |
batches = split_text_into_batches(input_text, max_tokens_per_batch)
|
47 |
translated_text = ""
|
48 |
+
|
49 |
for batch in batches:
|
50 |
+
batch_preprocessed = ip.preprocess_batch([batch], src_lang=src_lang, tgt_lang=tgt_lang)
|
51 |
+
inputs = tokenizer(
|
52 |
+
batch_preprocessed,
|
53 |
+
truncation=True,
|
54 |
+
padding="longest",
|
55 |
+
return_tensors="pt",
|
56 |
+
return_attention_mask=True,
|
57 |
+
).to(DEVICE)
|
58 |
+
|
59 |
+
with torch.no_grad():
|
60 |
+
generated_tokens = model.generate(
|
61 |
+
**inputs,
|
62 |
+
use_cache=True,
|
63 |
+
min_length=0,
|
64 |
+
max_length=256,
|
65 |
+
num_beams=5,
|
66 |
+
num_return_sequences=1,
|
67 |
+
)
|
68 |
+
|
69 |
+
with tokenizer.as_target_tokenizer():
|
70 |
+
decoded_tokens = tokenizer.batch_decode(
|
71 |
+
generated_tokens.detach().cpu().tolist(),
|
72 |
+
skip_special_tokens=True,
|
73 |
+
clean_up_tokenization_spaces=True,
|
74 |
+
)
|
75 |
+
|
76 |
+
translations = ip.postprocess_batch(decoded_tokens, lang=tgt_lang)
|
77 |
+
translated_text += " ".join(translations) + " "
|
78 |
+
|
79 |
+
output = translated_text.strip()
|
80 |
_output_name = "result.txt"
|
81 |
+
with open(_output_name, "w", encoding="utf-8") as out_file:
|
82 |
+
out_file.write(output)
|
83 |
|
84 |
+
return output, _output_name
|
85 |
+
|
86 |
+
# Define Gradio UI
|
87 |
+
with gr.Blocks() as demo:
|
88 |
with gr.Row():
|
89 |
with gr.Column():
|
90 |
+
file_uploader = gr.File(label="Upload a text file (Optional)")
|
91 |
+
input_text = gr.Textbox(label="Input text", lines=5, placeholder="Enter text here...")
|
92 |
+
source_language = gr.Dropdown(
|
93 |
+
label="Source language",
|
94 |
+
choices=["Hindi", "Punjabi", "English"],
|
95 |
+
value="Hindi",
|
96 |
+
)
|
97 |
+
target_language = gr.Dropdown(
|
98 |
+
label="Target language",
|
99 |
+
choices=["Hindi", "Punjabi", "English"],
|
100 |
+
value="English",
|
101 |
+
)
|
|
|
|
|
102 |
btn = gr.Button("Translate")
|
103 |
with gr.Column():
|
104 |
+
output_text = gr.Textbox(label="Translated text", lines=5)
|
105 |
output_file = gr.File(label="Translated text file")
|
106 |
|
107 |
+
btn.click(
|
108 |
+
fn=run_translation,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
inputs=[file_uploader, input_text, source_language, target_language],
|
110 |
outputs=[output_text, output_file],
|
|
|
111 |
)
|
112 |
|
|
|
|
|
|
|
|
|
|
|
113 |
if __name__ == "__main__":
|
114 |
+
demo.launch(debug=True)
|