Spaces:
Runtime error
Runtime error
Commit
·
b962691
1
Parent(s):
6ec4d4f
trying fixing error
Browse files
app.py
CHANGED
|
@@ -2,19 +2,22 @@ import os
|
|
| 2 |
import spaces
|
| 3 |
|
| 4 |
import nltk
|
| 5 |
-
nltk.download('punkt')
|
| 6 |
from doctr.io import DocumentFile
|
| 7 |
from doctr.models import ocr_predictor
|
| 8 |
import gradio as gr
|
| 9 |
from PIL import Image
|
| 10 |
from happytransformer import HappyTextToText, TTSettings
|
| 11 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
|
| 12 |
import re
|
| 13 |
from lang_list import (
|
| 14 |
LANGUAGE_NAME_TO_CODE,
|
| 15 |
T2TT_TARGET_LANGUAGE_NAMES,
|
| 16 |
TEXT_SOURCE_LANGUAGE_NAMES,
|
| 17 |
)
|
|
|
|
|
|
|
| 18 |
DEFAULT_TARGET_LANGUAGE = "English"
|
| 19 |
from transformers import SeamlessM4TForTextToText
|
| 20 |
from transformers import AutoProcessor
|
|
@@ -34,7 +37,7 @@ OCRmodel = AutoModelForSeq2SeqLM.from_pretrained("Bhuvana/t5-base-spellchecker")
|
|
| 34 |
|
| 35 |
|
| 36 |
def correct_spell(inputs):
|
| 37 |
-
input_ids = OCRtokenizer.encode(inputs, return_tensors='pt'
|
| 38 |
sample_output = OCRmodel.generate(
|
| 39 |
input_ids,
|
| 40 |
do_sample=True,
|
|
|
|
| 2 |
import spaces
|
| 3 |
|
| 4 |
import nltk
|
| 5 |
+
nltk.download('punkt',quiet=True)
|
| 6 |
from doctr.io import DocumentFile
|
| 7 |
from doctr.models import ocr_predictor
|
| 8 |
import gradio as gr
|
| 9 |
from PIL import Image
|
| 10 |
from happytransformer import HappyTextToText, TTSettings
|
| 11 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,logging
|
| 12 |
+
from transformers.integrations import deepspeed
|
| 13 |
import re
|
| 14 |
from lang_list import (
|
| 15 |
LANGUAGE_NAME_TO_CODE,
|
| 16 |
T2TT_TARGET_LANGUAGE_NAMES,
|
| 17 |
TEXT_SOURCE_LANGUAGE_NAMES,
|
| 18 |
)
|
| 19 |
+
logging.set_verbosity_error()
|
| 20 |
+
|
| 21 |
DEFAULT_TARGET_LANGUAGE = "English"
|
| 22 |
from transformers import SeamlessM4TForTextToText
|
| 23 |
from transformers import AutoProcessor
|
|
|
|
| 37 |
|
| 38 |
|
| 39 |
def correct_spell(inputs):
|
| 40 |
+
input_ids = OCRtokenizer.encode(inputs, return_tensors='pt')
|
| 41 |
sample_output = OCRmodel.generate(
|
| 42 |
input_ids,
|
| 43 |
do_sample=True,
|