Spaces:
Running
Running
Updated new
Browse files
app.py
CHANGED
@@ -1,5 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
def search_papers(user_input):
|
4 |
keywords = user_input.split(",") # Split input by commas for multiple keywords
|
5 |
results = fetch_latest_research_papers(keywords, num_results=5)
|
|
|
1 |
+
from smolagents import CodeAgent, HfApiModel, load_tool, tool
|
2 |
+
import datetime
|
3 |
+
import requests
|
4 |
+
import pytz
|
5 |
+
import yaml
|
6 |
+
from tools.final_answer import FinalAnswerTool
|
7 |
+
from scholarly import scholarly
|
8 |
import gradio as gr
|
9 |
|
10 |
+
@tool
|
11 |
+
def fetch_latest_research_papers(keywords: list, num_results: int = 5) -> list:
|
12 |
+
"""Fetches the latest research papers from Google Scholar based on provided keywords.
|
13 |
+
Args:
|
14 |
+
keywords: A list of keywords to search for relevant papers.
|
15 |
+
num_results: The number of papers to fetch (default is 5).
|
16 |
+
"""
|
17 |
+
try:
|
18 |
+
query = " ".join(keywords)
|
19 |
+
search_results = scholarly.search_pubs(query)
|
20 |
+
papers = []
|
21 |
+
for i in range(num_results):
|
22 |
+
paper = next(search_results, None)
|
23 |
+
if paper:
|
24 |
+
papers.append({
|
25 |
+
"title": paper['bib'].get('title', 'No Title'),
|
26 |
+
"authors": paper['bib'].get('author', 'Unknown Authors'),
|
27 |
+
"year": paper['bib'].get('pub_year', 'Unknown Year'),
|
28 |
+
"abstract": paper['bib'].get('abstract', 'No Abstract Available'),
|
29 |
+
"link": paper.get('pub_url', 'No Link Available')
|
30 |
+
})
|
31 |
+
return papers
|
32 |
+
except Exception as e:
|
33 |
+
return [f"Error fetching research papers: {str(e)}"]
|
34 |
+
|
35 |
+
final_answer = FinalAnswerTool()
|
36 |
+
|
37 |
+
model = HfApiModel(
|
38 |
+
max_tokens=2096,
|
39 |
+
temperature=0.5,
|
40 |
+
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
|
41 |
+
custom_role_conversions=None,
|
42 |
+
)
|
43 |
+
|
44 |
+
with open("prompts.yaml", 'r') as stream:
|
45 |
+
prompt_templates = yaml.safe_load(stream)
|
46 |
+
|
47 |
+
agent = CodeAgent(
|
48 |
+
model=model,
|
49 |
+
tools=[final_answer, fetch_latest_research_papers],
|
50 |
+
max_steps=6,
|
51 |
+
verbosity_level=1,
|
52 |
+
grammar=None,
|
53 |
+
planning_interval=None,
|
54 |
+
name="ScholarAgent",
|
55 |
+
description="An AI agent that fetches the latest research papers from Google Scholar based on user-defined keywords and filters.",
|
56 |
+
prompt_templates=prompt_templates
|
57 |
+
)
|
58 |
+
|
59 |
def search_papers(user_input):
|
60 |
keywords = user_input.split(",") # Split input by commas for multiple keywords
|
61 |
results = fetch_latest_research_papers(keywords, num_results=5)
|