Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,91 +1,168 @@
|
|
1 |
-
# import feedparser
|
2 |
-
# import urllib.parse
|
3 |
-
# import yaml
|
4 |
-
# import gradio as gr
|
5 |
-
# from smolagents import CodeAgent, HfApiModel, tool
|
6 |
-
# from tools.final_answer import FinalAnswerTool
|
7 |
-
|
8 |
-
# @tool
|
9 |
-
# def fetch_latest_arxiv_papers(keywords: list, num_results: int = 3) -> list:
|
10 |
-
# """Fetches the latest research papers from arXiv based on provided keywords.
|
11 |
-
|
12 |
-
# Args:
|
13 |
-
# keywords: A list of keywords to search for relevant papers.
|
14 |
-
# num_results: The number of papers to fetch (default is 3).
|
15 |
-
|
16 |
-
# Returns:
|
17 |
-
# A list of dictionaries containing:
|
18 |
-
# - "title": The title of the research paper.
|
19 |
-
# - "authors": The authors of the paper.
|
20 |
-
# - "year": The publication year.
|
21 |
-
# - "abstract": A summary of the research paper.
|
22 |
-
# - "link": A direct link to the paper on arXiv.
|
23 |
-
# """
|
24 |
-
# try:
|
25 |
-
# print(f"DEBUG: Searching arXiv papers with keywords: {keywords}") # Debug input
|
26 |
|
27 |
-
# #Properly format query with +AND+ for multiple keywords
|
28 |
-
# query = "+AND+".join([f"all:{kw}" for kw in keywords])
|
29 |
-
# query_encoded = urllib.parse.quote(query) # Encode spaces and special characters
|
30 |
|
31 |
-
# url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results={num_results}&sortBy=submittedDate&sortOrder=descending"
|
32 |
|
33 |
-
# print(f"DEBUG: Query URL - {url}") # Debug URL
|
34 |
|
35 |
-
# feed = feedparser.parse(url)
|
36 |
|
37 |
-
# papers = []
|
38 |
-
# for entry in feed.entries:
|
39 |
-
# papers.append({
|
40 |
-
# "title": entry.title,
|
41 |
-
# "authors": ", ".join(author.name for author in entry.authors),
|
42 |
-
# "year": entry.published[:4], # Extract year
|
43 |
-
# "abstract": entry.summary,
|
44 |
-
# "link": entry.link
|
45 |
-
# })
|
46 |
|
47 |
-
# return papers
|
48 |
|
49 |
-
# except Exception as e:
|
50 |
-
# print(f"ERROR: {str(e)}") # Debug errors
|
51 |
-
# return [f"Error fetching research papers: {str(e)}"]
|
52 |
|
53 |
|
54 |
-
#"""------Applied BM25 search for paper retrival------"""
|
55 |
-
# from rank_bm25 import BM25Okapi
|
56 |
-
# import nltk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
#
|
59 |
-
#
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
#
|
63 |
-
#
|
64 |
-
# shutil.rmtree(nltk_data_path) # Remove corrupted version
|
65 |
|
66 |
-
#
|
|
|
|
|
67 |
|
68 |
-
# #
|
69 |
-
#
|
70 |
|
71 |
-
#
|
|
|
72 |
|
|
|
|
|
73 |
|
74 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
# def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
|
76 |
-
# """Fetches and ranks arXiv papers using
|
77 |
|
78 |
# Args:
|
79 |
# keywords: List of keywords for search.
|
80 |
# num_results: Number of results to return.
|
81 |
|
82 |
# Returns:
|
83 |
-
# List of the most relevant papers based on
|
84 |
# """
|
85 |
# try:
|
86 |
# print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")
|
87 |
|
88 |
-
# # Use a general keyword search
|
89 |
# query = "+AND+".join([f"all:{kw}" for kw in keywords])
|
90 |
# query_encoded = urllib.parse.quote(query)
|
91 |
# url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"
|
@@ -108,226 +185,251 @@
|
|
108 |
# if not papers:
|
109 |
# return [{"error": "No results found. Try different keywords."}]
|
110 |
|
111 |
-
# #
|
112 |
-
#
|
113 |
-
#
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
#
|
116 |
-
#
|
117 |
|
118 |
-
# #
|
119 |
-
# ranked_papers = sorted(zip(papers,
|
120 |
|
121 |
-
# # Return the most relevant
|
122 |
# return [paper[0] for paper in ranked_papers[:num_results]]
|
123 |
|
124 |
# except Exception as e:
|
125 |
# print(f"ERROR: {str(e)}")
|
126 |
# return [{"error": f"Error fetching research papers: {str(e)}"}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
|
129 |
-
|
130 |
-
import feedparser
|
131 |
-
import urllib.parse
|
132 |
-
import yaml
|
133 |
-
from tools.final_answer import FinalAnswerTool
|
134 |
-
import numpy as np
|
135 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
136 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
137 |
-
import gradio as gr
|
138 |
-
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
|
139 |
-
import nltk
|
140 |
|
141 |
-
import datetime
|
142 |
-
import requests
|
143 |
-
import pytz
|
144 |
-
from tools.final_answer import FinalAnswerTool
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
|
150 |
|
151 |
-
@tool # ✅ Register the function properly as a SmolAgents tool
|
152 |
-
def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
|
153 |
-
"""Fetches and ranks arXiv papers using TF-IDF and Cosine Similarity.
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
|
176 |
-
for entry in feed.entries:
|
177 |
-
papers.append({
|
178 |
-
"title": entry.title,
|
179 |
-
"authors": ", ".join(author.name for author in entry.authors),
|
180 |
-
"year": entry.published[:4],
|
181 |
-
"abstract": entry.summary,
|
182 |
-
"link": entry.link
|
183 |
-
})
|
184 |
|
185 |
-
|
186 |
-
return [{"error": "No results found. Try different keywords."}]
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
vectorizer = TfidfVectorizer(stop_words=stopwords.words('english')) # Remove stopwords
|
191 |
-
tfidf_matrix = vectorizer.fit_transform(corpus)
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
|
199 |
|
200 |
-
|
201 |
-
|
|
|
|
|
202 |
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
except Exception as e:
|
207 |
-
|
208 |
-
|
|
|
209 |
@tool
|
210 |
def get_current_time_in_timezone(timezone: str) -> str:
|
211 |
-
"""
|
|
|
212 |
Args:
|
213 |
timezone: A string representing a valid timezone (e.g., 'America/New_York').
|
|
|
|
|
|
|
214 |
"""
|
215 |
try:
|
216 |
-
# Create timezone object
|
217 |
tz = pytz.timezone(timezone)
|
218 |
-
# Get current time in that timezone
|
219 |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
|
220 |
return f"The current local time in {timezone} is: {local_time}"
|
221 |
except Exception as e:
|
222 |
return f"Error fetching time for timezone '{timezone}': {str(e)}"
|
223 |
|
224 |
-
|
225 |
final_answer = FinalAnswerTool()
|
226 |
|
227 |
-
|
228 |
-
# AI Model
|
229 |
model = HfApiModel(
|
230 |
max_tokens=2096,
|
231 |
temperature=0.5,
|
232 |
-
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
|
233 |
custom_role_conversions=None,
|
|
|
234 |
)
|
235 |
|
236 |
-
#
|
237 |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
238 |
|
239 |
-
|
240 |
-
# Load prompt templates
|
241 |
with open("prompts.yaml", 'r') as stream:
|
242 |
prompt_templates = yaml.safe_load(stream)
|
243 |
|
244 |
-
#
|
245 |
agent = CodeAgent(
|
246 |
model=model,
|
247 |
-
tools=[final_answer,
|
248 |
max_steps=6,
|
249 |
verbosity_level=1,
|
250 |
grammar=None,
|
251 |
planning_interval=None,
|
252 |
name="ScholarAgent",
|
253 |
-
description="An AI
|
254 |
prompt_templates=prompt_templates
|
255 |
)
|
256 |
|
257 |
-
#
|
258 |
-
# def search_papers(user_input):
|
259 |
-
# keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
|
260 |
-
# print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
|
261 |
-
|
262 |
-
# if not keywords:
|
263 |
-
# print("DEBUG: No valid keywords provided.")
|
264 |
-
# return "Error: Please enter at least one valid keyword."
|
265 |
-
|
266 |
-
# results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
|
267 |
-
# print(f"DEBUG: Results received - {results}") # Debug function output
|
268 |
-
|
269 |
-
# if isinstance(results, list) and results and isinstance(results[0], dict):
|
270 |
-
# #Format output with better readability and clarity
|
271 |
-
# formatted_results = "\n\n".join([
|
272 |
-
# f"---\n\n"
|
273 |
-
# f"📌 **Title:**\n{paper['title']}\n\n"
|
274 |
-
# f"👨🔬 **Authors:**\n{paper['authors']}\n\n"
|
275 |
-
# f"📅 **Year:** {paper['year']}\n\n"
|
276 |
-
# f"📖 **Abstract:**\n{paper['abstract'][:500]}... *(truncated for readability)*\n\n"
|
277 |
-
# f"[🔗 Read Full Paper]({paper['link']})\n\n"
|
278 |
-
# for paper in results
|
279 |
-
# ])
|
280 |
-
# return formatted_results
|
281 |
-
|
282 |
-
# print("DEBUG: No results found.")
|
283 |
-
# return "No results found. Try different keywords."
|
284 |
-
|
285 |
-
#Search Papers
|
286 |
-
def search_papers(user_input):
|
287 |
-
keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
|
288 |
-
print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
|
289 |
-
|
290 |
-
if not keywords:
|
291 |
-
print("DEBUG: No valid keywords provided.")
|
292 |
-
return "Error: Please enter at least one valid keyword."
|
293 |
-
|
294 |
-
results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
|
295 |
-
print(f"DEBUG: Results received - {results}") # Debug function output
|
296 |
-
|
297 |
-
# Check if the API returned an error
|
298 |
-
if isinstance(results, list) and len(results) > 0 and "error" in results[0]:
|
299 |
-
return results[0]["error"] # Return the error message directly
|
300 |
-
|
301 |
-
# Format results only if valid papers exist
|
302 |
-
if isinstance(results, list) and results and isinstance(results[0], dict):
|
303 |
-
formatted_results = "\n\n".join([
|
304 |
-
f"---\n\n"
|
305 |
-
f"📌 **Title:** {paper['title']}\n\n"
|
306 |
-
f"👨🔬 **Authors:** {paper['authors']}\n\n"
|
307 |
-
f"📅 **Year:** {paper['year']}\n\n"
|
308 |
-
f"📖 **Abstract:** {paper['abstract'][:500]}... *(truncated for readability)*\n\n"
|
309 |
-
f"[🔗 Read Full Paper]({paper['link']})\n\n"
|
310 |
-
for paper in results
|
311 |
-
])
|
312 |
-
return formatted_results
|
313 |
-
|
314 |
-
print("DEBUG: No results found.")
|
315 |
-
return "No results found. Try different keywords."
|
316 |
-
|
317 |
-
# Launch Gradio UI with CodeAgent
|
318 |
GradioUI(agent).launch()
|
319 |
|
320 |
-
|
321 |
-
# # Create Gradio UI
|
322 |
-
# with gr.Blocks() as demo:
|
323 |
-
# gr.Markdown("# ScholarAgent")
|
324 |
-
# keyword_input = gr.Textbox(label="Enter keywords (comma-separated)", placeholder="e.g., deep learning, reinforcement learning")
|
325 |
-
# output_display = gr.Markdown()
|
326 |
-
# search_button = gr.Button("Search")
|
327 |
-
|
328 |
-
# search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
|
329 |
-
|
330 |
-
# print("DEBUG: Gradio UI is running. Waiting for user input...")
|
331 |
-
|
332 |
-
# # Launch Gradio App
|
333 |
-
# demo.launch()
|
|
|
1 |
+
# # import feedparser
|
2 |
+
# # import urllib.parse
|
3 |
+
# # import yaml
|
4 |
+
# # import gradio as gr
|
5 |
+
# # from smolagents import CodeAgent, HfApiModel, tool
|
6 |
+
# # from tools.final_answer import FinalAnswerTool
|
7 |
+
|
8 |
+
# # @tool
|
9 |
+
# # def fetch_latest_arxiv_papers(keywords: list, num_results: int = 3) -> list:
|
10 |
+
# # """Fetches the latest research papers from arXiv based on provided keywords.
|
11 |
+
|
12 |
+
# # Args:
|
13 |
+
# # keywords: A list of keywords to search for relevant papers.
|
14 |
+
# # num_results: The number of papers to fetch (default is 3).
|
15 |
+
|
16 |
+
# # Returns:
|
17 |
+
# # A list of dictionaries containing:
|
18 |
+
# # - "title": The title of the research paper.
|
19 |
+
# # - "authors": The authors of the paper.
|
20 |
+
# # - "year": The publication year.
|
21 |
+
# # - "abstract": A summary of the research paper.
|
22 |
+
# # - "link": A direct link to the paper on arXiv.
|
23 |
+
# # """
|
24 |
+
# # try:
|
25 |
+
# # print(f"DEBUG: Searching arXiv papers with keywords: {keywords}") # Debug input
|
26 |
|
27 |
+
# # #Properly format query with +AND+ for multiple keywords
|
28 |
+
# # query = "+AND+".join([f"all:{kw}" for kw in keywords])
|
29 |
+
# # query_encoded = urllib.parse.quote(query) # Encode spaces and special characters
|
30 |
|
31 |
+
# # url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results={num_results}&sortBy=submittedDate&sortOrder=descending"
|
32 |
|
33 |
+
# # print(f"DEBUG: Query URL - {url}") # Debug URL
|
34 |
|
35 |
+
# # feed = feedparser.parse(url)
|
36 |
|
37 |
+
# # papers = []
|
38 |
+
# # for entry in feed.entries:
|
39 |
+
# # papers.append({
|
40 |
+
# # "title": entry.title,
|
41 |
+
# # "authors": ", ".join(author.name for author in entry.authors),
|
42 |
+
# # "year": entry.published[:4], # Extract year
|
43 |
+
# # "abstract": entry.summary,
|
44 |
+
# # "link": entry.link
|
45 |
+
# # })
|
46 |
|
47 |
+
# # return papers
|
48 |
|
49 |
+
# # except Exception as e:
|
50 |
+
# # print(f"ERROR: {str(e)}") # Debug errors
|
51 |
+
# # return [f"Error fetching research papers: {str(e)}"]
|
52 |
|
53 |
|
54 |
+
# #"""------Applied BM25 search for paper retrival------"""
|
55 |
+
# # from rank_bm25 import BM25Okapi
|
56 |
+
# # import nltk
|
57 |
+
|
58 |
+
# # import os
|
59 |
+
# # import shutil
|
60 |
+
|
61 |
+
|
62 |
+
# # nltk_data_path = os.path.join(nltk.data.path[0], "tokenizers", "punkt")
|
63 |
+
# # if os.path.exists(nltk_data_path):
|
64 |
+
# # shutil.rmtree(nltk_data_path) # Remove corrupted version
|
65 |
+
|
66 |
+
# # print("Removed old NLTK 'punkt' data. Reinstalling...")
|
67 |
+
|
68 |
+
# # # Step 2: Download the correct 'punkt' tokenizer
|
69 |
+
# # nltk.download("punkt_tab")
|
70 |
+
|
71 |
+
# # print("Successfully installed 'punkt'!")
|
72 |
+
|
73 |
+
|
74 |
+
# # @tool # Register the function properly as a SmolAgents tool
|
75 |
+
# # def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
|
76 |
+
# # """Fetches and ranks arXiv papers using BM25 keyword relevance.
|
77 |
+
|
78 |
+
# # Args:
|
79 |
+
# # keywords: List of keywords for search.
|
80 |
+
# # num_results: Number of results to return.
|
81 |
+
|
82 |
+
# # Returns:
|
83 |
+
# # List of the most relevant papers based on BM25 ranking.
|
84 |
+
# # """
|
85 |
+
# # try:
|
86 |
+
# # print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")
|
87 |
+
|
88 |
+
# # # Use a general keyword search (without `ti:` and `abs:`)
|
89 |
+
# # query = "+AND+".join([f"all:{kw}" for kw in keywords])
|
90 |
+
# # query_encoded = urllib.parse.quote(query)
|
91 |
+
# # url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"
|
92 |
+
|
93 |
+
# # print(f"DEBUG: Query URL - {url}")
|
94 |
|
95 |
+
# # feed = feedparser.parse(url)
|
96 |
+
# # papers = []
|
97 |
|
98 |
+
# # # Extract papers from arXiv
|
99 |
+
# # for entry in feed.entries:
|
100 |
+
# # papers.append({
|
101 |
+
# # "title": entry.title,
|
102 |
+
# # "authors": ", ".join(author.name for author in entry.authors),
|
103 |
+
# # "year": entry.published[:4],
|
104 |
+
# # "abstract": entry.summary,
|
105 |
+
# # "link": entry.link
|
106 |
+
# # })
|
107 |
|
108 |
+
# # if not papers:
|
109 |
+
# # return [{"error": "No results found. Try different keywords."}]
|
|
|
110 |
|
111 |
+
# # # Apply BM25 ranking
|
112 |
+
# # tokenized_corpus = [nltk.word_tokenize(paper["title"].lower() + " " + paper["abstract"].lower()) for paper in papers]
|
113 |
+
# # bm25 = BM25Okapi(tokenized_corpus)
|
114 |
|
115 |
+
# # tokenized_query = nltk.word_tokenize(" ".join(keywords).lower())
|
116 |
+
# # scores = bm25.get_scores(tokenized_query)
|
117 |
|
118 |
+
# # # Sort papers based on BM25 score
|
119 |
+
# # ranked_papers = sorted(zip(papers, scores), key=lambda x: x[1], reverse=True)
|
120 |
|
121 |
+
# # # Return the most relevant ones
|
122 |
+
# # return [paper[0] for paper in ranked_papers[:num_results]]
|
123 |
|
124 |
+
# # except Exception as e:
|
125 |
+
# # print(f"ERROR: {str(e)}")
|
126 |
+
# # return [{"error": f"Error fetching research papers: {str(e)}"}]
|
127 |
+
|
128 |
+
|
129 |
+
# """------Applied TF-IDF for better semantic search------"""
|
130 |
+
# import feedparser
|
131 |
+
# import urllib.parse
|
132 |
+
# import yaml
|
133 |
+
# from tools.final_answer import FinalAnswerTool
|
134 |
+
# import numpy as np
|
135 |
+
# from sklearn.feature_extraction.text import TfidfVectorizer
|
136 |
+
# from sklearn.metrics.pairwise import cosine_similarity
|
137 |
+
# import gradio as gr
|
138 |
+
# from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
|
139 |
+
# import nltk
|
140 |
+
|
141 |
+
# import datetime
|
142 |
+
# import requests
|
143 |
+
# import pytz
|
144 |
+
# from tools.final_answer import FinalAnswerTool
|
145 |
+
|
146 |
+
# from Gradio_UI import GradioUI
|
147 |
+
|
148 |
+
# nltk.download("stopwords")
|
149 |
+
# from nltk.corpus import stopwords
|
150 |
+
|
151 |
+
# @tool # ✅ Register the function properly as a SmolAgents tool
|
152 |
# def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
|
153 |
+
# """Fetches and ranks arXiv papers using TF-IDF and Cosine Similarity.
|
154 |
|
155 |
# Args:
|
156 |
# keywords: List of keywords for search.
|
157 |
# num_results: Number of results to return.
|
158 |
|
159 |
# Returns:
|
160 |
+
# List of the most relevant papers based on TF-IDF ranking.
|
161 |
# """
|
162 |
# try:
|
163 |
# print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")
|
164 |
|
165 |
+
# # Use a general keyword search
|
166 |
# query = "+AND+".join([f"all:{kw}" for kw in keywords])
|
167 |
# query_encoded = urllib.parse.quote(query)
|
168 |
# url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"
|
|
|
185 |
# if not papers:
|
186 |
# return [{"error": "No results found. Try different keywords."}]
|
187 |
|
188 |
+
# # Prepare TF-IDF Vectorization
|
189 |
+
# corpus = [paper["title"] + " " + paper["abstract"] for paper in papers]
|
190 |
+
# vectorizer = TfidfVectorizer(stop_words=stopwords.words('english')) # Remove stopwords
|
191 |
+
# tfidf_matrix = vectorizer.fit_transform(corpus)
|
192 |
+
|
193 |
+
# # Transform Query into TF-IDF Vector
|
194 |
+
# query_str = " ".join(keywords)
|
195 |
+
# query_vec = vectorizer.transform([query_str])
|
196 |
|
197 |
+
# #Compute Cosine Similarity
|
198 |
+
# similarity_scores = cosine_similarity(query_vec, tfidf_matrix).flatten()
|
199 |
|
200 |
+
# #Sort papers based on similarity score
|
201 |
+
# ranked_papers = sorted(zip(papers, similarity_scores), key=lambda x: x[1], reverse=True)
|
202 |
|
203 |
+
# # Return the most relevant papers
|
204 |
# return [paper[0] for paper in ranked_papers[:num_results]]
|
205 |
|
206 |
# except Exception as e:
|
207 |
# print(f"ERROR: {str(e)}")
|
208 |
# return [{"error": f"Error fetching research papers: {str(e)}"}]
|
209 |
+
# @tool
|
210 |
+
# def get_current_time_in_timezone(timezone: str) -> str:
|
211 |
+
# """A tool that fetches the current local time in a specified timezone.
|
212 |
+
# Args:
|
213 |
+
# timezone: A string representing a valid timezone (e.g., 'America/New_York').
|
214 |
+
# """
|
215 |
+
# try:
|
216 |
+
# # Create timezone object
|
217 |
+
# tz = pytz.timezone(timezone)
|
218 |
+
# # Get current time in that timezone
|
219 |
+
# local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
|
220 |
+
# return f"The current local time in {timezone} is: {local_time}"
|
221 |
+
# except Exception as e:
|
222 |
+
# return f"Error fetching time for timezone '{timezone}': {str(e)}"
|
223 |
|
224 |
|
225 |
+
# final_answer = FinalAnswerTool()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
|
|
|
|
|
|
|
|
227 |
|
228 |
+
# # AI Model
|
229 |
+
# model = HfApiModel(
|
230 |
+
# max_tokens=2096,
|
231 |
+
# temperature=0.5,
|
232 |
+
# model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
|
233 |
+
# custom_role_conversions=None,
|
234 |
+
# )
|
235 |
|
236 |
+
# # Import tool from Hub
|
237 |
+
# image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
238 |
|
|
|
|
|
|
|
239 |
|
240 |
+
# # Load prompt templates
|
241 |
+
# with open("prompts.yaml", 'r') as stream:
|
242 |
+
# prompt_templates = yaml.safe_load(stream)
|
243 |
|
244 |
+
# # Create the AI Agent
|
245 |
+
# agent = CodeAgent(
|
246 |
+
# model=model,
|
247 |
+
# tools=[final_answer,fetch_latest_arxiv_papers], # Add your tools here
|
248 |
+
# max_steps=6,
|
249 |
+
# verbosity_level=1,
|
250 |
+
# grammar=None,
|
251 |
+
# planning_interval=None,
|
252 |
+
# name="ScholarAgent",
|
253 |
+
# description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
|
254 |
+
# prompt_templates=prompt_templates
|
255 |
+
# )
|
256 |
|
257 |
+
# # # Define Gradio Search Function
|
258 |
+
# # def search_papers(user_input):
|
259 |
+
# # keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
|
260 |
+
# # print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
|
261 |
+
|
262 |
+
# # if not keywords:
|
263 |
+
# # print("DEBUG: No valid keywords provided.")
|
264 |
+
# # return "Error: Please enter at least one valid keyword."
|
265 |
+
|
266 |
+
# # results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
|
267 |
+
# # print(f"DEBUG: Results received - {results}") # Debug function output
|
268 |
+
|
269 |
+
# # if isinstance(results, list) and results and isinstance(results[0], dict):
|
270 |
+
# # #Format output with better readability and clarity
|
271 |
+
# # formatted_results = "\n\n".join([
|
272 |
+
# # f"---\n\n"
|
273 |
+
# # f"📌 **Title:**\n{paper['title']}\n\n"
|
274 |
+
# # f"👨🔬 **Authors:**\n{paper['authors']}\n\n"
|
275 |
+
# # f"📅 **Year:** {paper['year']}\n\n"
|
276 |
+
# # f"📖 **Abstract:**\n{paper['abstract'][:500]}... *(truncated for readability)*\n\n"
|
277 |
+
# # f"[🔗 Read Full Paper]({paper['link']})\n\n"
|
278 |
+
# # for paper in results
|
279 |
+
# # ])
|
280 |
+
# # return formatted_results
|
281 |
+
|
282 |
+
# # print("DEBUG: No results found.")
|
283 |
+
# # return "No results found. Try different keywords."
|
284 |
|
285 |
+
# #Search Papers
|
286 |
+
# def search_papers(user_input):
|
287 |
+
# keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
|
288 |
+
# print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
|
289 |
+
|
290 |
+
# if not keywords:
|
291 |
+
# print("DEBUG: No valid keywords provided.")
|
292 |
+
# return "Error: Please enter at least one valid keyword."
|
293 |
+
|
294 |
+
# results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
|
295 |
+
# print(f"DEBUG: Results received - {results}") # Debug function output
|
296 |
+
|
297 |
+
# # Check if the API returned an error
|
298 |
+
# if isinstance(results, list) and len(results) > 0 and "error" in results[0]:
|
299 |
+
# return results[0]["error"] # Return the error message directly
|
300 |
+
|
301 |
+
# # Format results only if valid papers exist
|
302 |
+
# if isinstance(results, list) and results and isinstance(results[0], dict):
|
303 |
+
# formatted_results = "\n\n".join([
|
304 |
+
# f"---\n\n"
|
305 |
+
# f"📌 **Title:** {paper['title']}\n\n"
|
306 |
+
# f"👨🔬 **Authors:** {paper['authors']}\n\n"
|
307 |
+
# f"📅 **Year:** {paper['year']}\n\n"
|
308 |
+
# f"📖 **Abstract:** {paper['abstract'][:500]}... *(truncated for readability)*\n\n"
|
309 |
+
# f"[🔗 Read Full Paper]({paper['link']})\n\n"
|
310 |
+
# for paper in results
|
311 |
+
# ])
|
312 |
+
# return formatted_results
|
313 |
|
314 |
+
# print("DEBUG: No results found.")
|
315 |
+
# return "No results found. Try different keywords."
|
316 |
+
|
317 |
+
# # Launch Gradio UI with CodeAgent
|
318 |
+
# GradioUI(agent).launch()
|
319 |
+
|
320 |
+
|
321 |
+
# # # Create Gradio UI
|
322 |
+
# # with gr.Blocks() as demo:
|
323 |
+
# # gr.Markdown("# ScholarAgent")
|
324 |
+
# # keyword_input = gr.Textbox(label="Enter keywords (comma-separated)", placeholder="e.g., deep learning, reinforcement learning")
|
325 |
+
# # output_display = gr.Markdown()
|
326 |
+
# # search_button = gr.Button("Search")
|
327 |
|
328 |
+
# # search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
+
# # print("DEBUG: Gradio UI is running. Waiting for user input...")
|
|
|
331 |
|
332 |
+
# # # Launch Gradio App
|
333 |
+
# # demo.launch()
|
|
|
|
|
334 |
|
335 |
+
import os
|
336 |
+
import datetime
|
337 |
+
import requests
|
338 |
+
import pytz
|
339 |
+
import yaml
|
340 |
+
from smolagents import CodeAgent, HfApiModel, load_tool, tool
|
341 |
+
from tools.final_answer import FinalAnswerTool
|
342 |
+
from Gradio_UI import GradioUI
|
343 |
|
344 |
+
# Step 1: Set Hugging Face API Token
|
345 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "your_huggingface_api_token"
|
346 |
|
347 |
+
# Step 2: Define ScholarAgent's Paper Search Functionality
|
348 |
+
@tool
|
349 |
+
def fetch_arxiv_papers(query: str) -> str:
|
350 |
+
"""Fetches the top 3 most recent research papers from ArXiv based on a keyword search.
|
351 |
|
352 |
+
Args:
|
353 |
+
query: A string containing keywords or a full sentence describing the research topic.
|
354 |
+
|
355 |
+
Returns:
|
356 |
+
A formatted string with the top 3 recent papers, including title, authors, and ArXiv links.
|
357 |
+
"""
|
358 |
+
base_url = "http://export.arxiv.org/api/query"
|
359 |
+
params = {
|
360 |
+
"search_query": query,
|
361 |
+
"start": 0,
|
362 |
+
"max_results": 3,
|
363 |
+
"sortBy": "submittedDate",
|
364 |
+
"sortOrder": "descending",
|
365 |
+
}
|
366 |
|
367 |
+
try:
|
368 |
+
response = requests.get(base_url, params=params)
|
369 |
+
if response.status_code == 200:
|
370 |
+
papers = response.text.split("<entry>")
|
371 |
+
results = []
|
372 |
+
for paper in papers[1:4]: # Extract top 3 papers
|
373 |
+
title = paper.split("<title>")[1].split("</title>")[0].strip()
|
374 |
+
authors = paper.split("<author><name>")[1].split("</name>")[0].strip()
|
375 |
+
link = paper.split("<id>")[1].split("</id>")[0].strip()
|
376 |
+
results.append(f"- **{title}**\n - 📖 Authors: {authors}\n - 🔗 [Read here]({link})\n")
|
377 |
+
return "\n".join(results) if results else "No relevant papers found."
|
378 |
+
else:
|
379 |
+
return "Error: Unable to retrieve papers from ArXiv."
|
380 |
except Exception as e:
|
381 |
+
return f"API Error: {str(e)}"
|
382 |
+
|
383 |
+
# Step 3: Add a Timezone Utility Tool
|
384 |
@tool
|
385 |
def get_current_time_in_timezone(timezone: str) -> str:
|
386 |
+
"""Fetches the current local time in a specified timezone.
|
387 |
+
|
388 |
Args:
|
389 |
timezone: A string representing a valid timezone (e.g., 'America/New_York').
|
390 |
+
|
391 |
+
Returns:
|
392 |
+
A formatted string with the current time.
|
393 |
"""
|
394 |
try:
|
|
|
395 |
tz = pytz.timezone(timezone)
|
|
|
396 |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
|
397 |
return f"The current local time in {timezone} is: {local_time}"
|
398 |
except Exception as e:
|
399 |
return f"Error fetching time for timezone '{timezone}': {str(e)}"
|
400 |
|
401 |
+
# Step 4: Define Final Answer Tool (Required)
|
402 |
final_answer = FinalAnswerTool()
|
403 |
|
404 |
+
# Step 5: Configure Hugging Face Model with API Token
|
|
|
405 |
model = HfApiModel(
|
406 |
max_tokens=2096,
|
407 |
temperature=0.5,
|
408 |
+
model_id='Qwen/Qwen2.5-Coder-32B-Instruct', # Default model
|
409 |
custom_role_conversions=None,
|
410 |
+
|
411 |
)
|
412 |
|
413 |
+
# Step 6: Load Additional Tools
|
414 |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
415 |
|
416 |
+
# Step 7: Load Prompt Templates
|
|
|
417 |
with open("prompts.yaml", 'r') as stream:
|
418 |
prompt_templates = yaml.safe_load(stream)
|
419 |
|
420 |
+
# Step 8: Define ScholarAgent (AI Agent)
|
421 |
agent = CodeAgent(
|
422 |
model=model,
|
423 |
+
tools=[final_answer, fetch_arxiv_papers, get_current_time_in_timezone], # ScholarAgent tools
|
424 |
max_steps=6,
|
425 |
verbosity_level=1,
|
426 |
grammar=None,
|
427 |
planning_interval=None,
|
428 |
name="ScholarAgent",
|
429 |
+
description="An AI-powered research assistant that fetches top research papers from ArXiv.",
|
430 |
prompt_templates=prompt_templates
|
431 |
)
|
432 |
|
433 |
+
# Step 9: Launch Gradio UI with CodeAgent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
GradioUI(agent).launch()
|
435 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|