Spaces:
Running
Running
Updated app.y to arxiv API
Browse files
app.py
CHANGED
@@ -1,60 +1,38 @@
|
|
1 |
from smolagents import CodeAgent, HfApiModel, load_tool, tool
|
2 |
-
import datetime
|
3 |
-
import requests
|
4 |
-
import pytz
|
5 |
import yaml
|
6 |
-
|
7 |
-
from scholarly import scholarly
|
8 |
import gradio as gr
|
9 |
|
10 |
@tool
|
11 |
-
def
|
12 |
-
"""Fetches the latest research papers from
|
13 |
Args:
|
14 |
keywords: A list of keywords to search for relevant papers.
|
15 |
num_results: The number of papers to fetch (default is 5).
|
16 |
"""
|
17 |
try:
|
18 |
-
print(f"DEBUG: Searching papers with keywords: {keywords}") # Debug input
|
19 |
-
query = "
|
20 |
-
|
21 |
-
|
22 |
-
for _ in range(num_results): # Fetch extra papers to ensure we get recent ones
|
23 |
-
paper = next(search_results, None)
|
24 |
-
if paper:
|
25 |
-
scholarly.fill(paper) # Fetch additional metadata
|
26 |
-
pub_year = paper['bib'].get('pub_year', 'Unknown Year')
|
27 |
-
|
28 |
-
# Ensure year is an integer
|
29 |
-
if pub_year != 'Unknown Year':
|
30 |
-
try:
|
31 |
-
pub_year = int(pub_year)
|
32 |
-
except ValueError:
|
33 |
-
pub_year = 0 # Handle invalid years
|
34 |
-
|
35 |
-
print(f"DEBUG: Found paper - {paper['bib'].get('title', 'No Title')} ({pub_year})")
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
papers = sorted(papers, key=lambda x: x["year"] if isinstance(x["year"], int) else 0, reverse=True)
|
47 |
|
48 |
-
|
49 |
-
return papers[:num_results]
|
50 |
|
51 |
except Exception as e:
|
52 |
print(f"ERROR: {str(e)}") # Debug errors
|
53 |
return [f"Error fetching research papers: {str(e)}"]
|
54 |
|
55 |
|
56 |
-
final_answer = FinalAnswerTool()
|
57 |
-
|
58 |
model = HfApiModel(
|
59 |
max_tokens=2096,
|
60 |
temperature=0.5,
|
@@ -64,16 +42,16 @@ model = HfApiModel(
|
|
64 |
|
65 |
with open("prompts.yaml", 'r') as stream:
|
66 |
prompt_templates = yaml.safe_load(stream)
|
67 |
-
|
68 |
agent = CodeAgent(
|
69 |
model=model,
|
70 |
-
tools=[
|
71 |
max_steps=6,
|
72 |
verbosity_level=1,
|
73 |
grammar=None,
|
74 |
planning_interval=None,
|
75 |
name="ScholarAgent",
|
76 |
-
description="An AI agent that fetches the latest research papers from
|
77 |
prompt_templates=prompt_templates
|
78 |
)
|
79 |
|
@@ -85,11 +63,14 @@ def search_papers(user_input):
|
|
85 |
print("DEBUG: No valid keywords provided.")
|
86 |
return "Error: Please enter at least one valid keyword."
|
87 |
|
88 |
-
results =
|
89 |
print(f"DEBUG: Results received - {results}") # Debug function output
|
90 |
|
91 |
if isinstance(results, list) and results and isinstance(results[0], dict):
|
92 |
-
return "\n\n".join([
|
|
|
|
|
|
|
93 |
|
94 |
print("DEBUG: No results found.")
|
95 |
return "No results found. Try different keywords."
|
@@ -97,14 +78,13 @@ def search_papers(user_input):
|
|
97 |
|
98 |
# Create a simple Gradio interface
|
99 |
with gr.Blocks() as demo:
|
100 |
-
gr.Markdown("#
|
101 |
keyword_input = gr.Textbox(label="Enter keywords (comma-separated)", placeholder="e.g., deep learning, reinforcement learning")
|
102 |
output_display = gr.Markdown()
|
103 |
search_button = gr.Button("Search")
|
104 |
-
|
105 |
search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
|
106 |
|
107 |
-
|
108 |
print("DEBUG: Gradio UI is running. Waiting for user input...")
|
109 |
|
110 |
demo.launch()
|
|
|
1 |
from smolagents import CodeAgent, HfApiModel, load_tool, tool
|
|
|
|
|
|
|
2 |
import yaml
|
3 |
+
import feedparser
|
|
|
4 |
import gradio as gr
|
5 |
|
6 |
@tool
|
7 |
+
def fetch_latest_arxiv_papers(keywords: list, num_results: int = 1) -> list:
|
8 |
+
"""Fetches the latest research papers from arXiv based on provided keywords.
|
9 |
Args:
|
10 |
keywords: A list of keywords to search for relevant papers.
|
11 |
num_results: The number of papers to fetch (default is 5).
|
12 |
"""
|
13 |
try:
|
14 |
+
print(f"DEBUG: Searching arXiv papers with keywords: {keywords}") # Debug input
|
15 |
+
query = "+".join(keywords)
|
16 |
+
url = f"http://export.arxiv.org/api/query?search_query=all:{query}&start=0&max_results={num_results}&sortBy=submittedDate&sortOrder=descending"
|
17 |
+
feed = feedparser.parse(url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
papers = []
|
20 |
+
for entry in feed.entries:
|
21 |
+
papers.append({
|
22 |
+
"title": entry.title,
|
23 |
+
"authors": ", ".join(author.name for author in entry.authors),
|
24 |
+
"year": entry.published[:4], # Extract year
|
25 |
+
"abstract": entry.summary,
|
26 |
+
"link": entry.link
|
27 |
+
})
|
|
|
28 |
|
29 |
+
return papers
|
|
|
30 |
|
31 |
except Exception as e:
|
32 |
print(f"ERROR: {str(e)}") # Debug errors
|
33 |
return [f"Error fetching research papers: {str(e)}"]
|
34 |
|
35 |
|
|
|
|
|
36 |
model = HfApiModel(
|
37 |
max_tokens=2096,
|
38 |
temperature=0.5,
|
|
|
42 |
|
43 |
with open("prompts.yaml", 'r') as stream:
|
44 |
prompt_templates = yaml.safe_load(stream)
|
45 |
+
|
46 |
agent = CodeAgent(
|
47 |
model=model,
|
48 |
+
tools=[fetch_latest_arxiv_papers],
|
49 |
max_steps=6,
|
50 |
verbosity_level=1,
|
51 |
grammar=None,
|
52 |
planning_interval=None,
|
53 |
name="ScholarAgent",
|
54 |
+
description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
|
55 |
prompt_templates=prompt_templates
|
56 |
)
|
57 |
|
|
|
63 |
print("DEBUG: No valid keywords provided.")
|
64 |
return "Error: Please enter at least one valid keyword."
|
65 |
|
66 |
+
results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
|
67 |
print(f"DEBUG: Results received - {results}") # Debug function output
|
68 |
|
69 |
if isinstance(results, list) and results and isinstance(results[0], dict):
|
70 |
+
return "\n\n".join([
|
71 |
+
f"**Title:** {paper['title']}\n**Authors:** {paper['authors']}\n**Year:** {paper['year']}\n**Abstract:** {paper['abstract']}\n[Read More]({paper['link']})"
|
72 |
+
for paper in results
|
73 |
+
])
|
74 |
|
75 |
print("DEBUG: No results found.")
|
76 |
return "No results found. Try different keywords."
|
|
|
78 |
|
79 |
# Create a simple Gradio interface
|
80 |
with gr.Blocks() as demo:
|
81 |
+
gr.Markdown("# arXiv Research Paper Fetcher")
|
82 |
keyword_input = gr.Textbox(label="Enter keywords (comma-separated)", placeholder="e.g., deep learning, reinforcement learning")
|
83 |
output_display = gr.Markdown()
|
84 |
search_button = gr.Button("Search")
|
85 |
+
|
86 |
search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
|
87 |
|
|
|
88 |
print("DEBUG: Gradio UI is running. Waiting for user input...")
|
89 |
|
90 |
demo.launch()
|