File size: 2,133 Bytes
5edee8f
ca9e7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
f78137c
 
 
ca9e7bd
 
 
 
 
 
 
f78137c
 
a65e425
ce8df04
 
 
c28084b
ce8df04
 
f78137c
ce8df04
 
ca9e7bd
 
ce8df04
ca9e7bd
ce8df04
 
 
f78137c
218b27d
f78137c
ca9e7bd
f78137c
ce8df04
218b27d
 
 
 
 
 
4befcc4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import requests
# from transcribe import transcribe
from sentiment_analysis import sentiment_analyser
from summary import summarizer
from topic import topic_gen

def transcribe2():
  response = requests.post("https://dwarkesh-whisper-speaker-recognition.hf.space/run/predict", json={
    "data": [
      {"name":"audio.wav","data":"data:audio/wav;base64,UklGRiQAAABXQVZFZm10IBAAAAABAAEARKwAAIhYAQACABAAZGF0YQAAAAA="},
      2,
  ]}).json()

  data = response["data"]

def main(audio_file, number_of_speakers):
  # Audio to Text Converter
  # text_data = transcribe(audio_file, number_of_speakers)
  # print(text_data)
  text_data = ""
  topic = topic_gen(text_data)
  summary = summarizer(text_data)
  sentiment_analysis = sentiment_analyser(text_data)
  return topic, summary, sentiment_analysis

# UI Interface on the Hugging Face Page
with gr.Blocks() as demo:
  with gr.Box():
    with gr.Row():
      with gr.Column():
        audio_file = gr.Audio(label="Upload an Audio file (.wav)", source="upload", type="filepath")
        number_of_speakers = gr.Number(label="Number of Speakers", value=2)
        with gr.Row():
          btn_clear = gr.ClearButton(value="Clear", components=[audio_file, number_of_speakers])
          btn_submit = gr.Button(value="Submit")
      with gr.Column():
        topic = gr.Textbox(label="Title", placeholder="Title for Conversation")
        summary = gr.Textbox(label="Short Summary", placeholder="Short Summary for Conversation")
        sentiment_analysis = gr.Textbox(label="Sentiment Analysis", placeholder="Sentiment Analysis for Conversation")
      btn_submit.click(fn=main, inputs=[audio_file, number_of_speakers], outputs=[topic, summary, sentiment_analysis])
    gr.Markdown("## Examples")
    gr.Examples( 
      examples=[
        ["./examples/sample4.wav", 2],
      ],
      inputs=[audio_file, number_of_speakers],
      outputs=[topic, summary, sentiment_analysis],
      fn=main,
    )
  gr.Markdown(
    """
    See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
    for more details.
    """
  )

demo.launch()