Spaces:
Runtime error
Runtime error
Create rpc.py
Browse files
rpc.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow import keras
|
3 |
+
from keras.layers import *
|
4 |
+
import keras_nlp
|
5 |
+
|
6 |
+
import math
|
7 |
+
import json
|
8 |
+
from transformers import AutoTokenizer
|
9 |
+
from tokenizers import AddedToken
|
10 |
+
|
11 |
+
|
12 |
+
# Config
|
13 |
+
input_size = 512
|
14 |
+
embed_dim = 128
|
15 |
+
|
16 |
+
|
17 |
+
# Tokenizer
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained('google/t5-v1_1-base')
|
19 |
+
tokenizer.add_tokens(AddedToken("\n", normalized=False))
|
20 |
+
tokenizer.add_tokens(AddedToken("<s>", normalized=False))
|
21 |
+
vocab_size = len(tokenizer.get_vocab().keys())
|
22 |
+
print("vocab_size:", vocab_size)
|
23 |
+
print("pad token id:", tokenizer.pad_token)
|
24 |
+
|
25 |
+
|
26 |
+
# Masked Accuracy Metric
|
27 |
+
def masked_accuracy(y_true, y_pred, padding_token=tokenizer.pad_token_id):
|
28 |
+
y_true = tf.cast(y_true, tf.int32)
|
29 |
+
y_pred = tf.cast(tf.argmax(y_pred, axis=-1), tf.int32)
|
30 |
+
mask = tf.cast(tf.not_equal(y_true, padding_token), tf.float32)
|
31 |
+
matches = tf.cast(tf.equal(y_true, y_pred), tf.float32)
|
32 |
+
accuracy = tf.reduce_sum(matches * mask) / tf.reduce_sum(mask)
|
33 |
+
return accuracy
|
34 |
+
|
35 |
+
|
36 |
+
# Embedding Layer
|
37 |
+
class SharedEmbedding(tf.keras.layers.Layer):
|
38 |
+
def __init__(self, vocab_size, embed_dim, **kwargs):
|
39 |
+
super(SharedEmbedding, self).__init__(**kwargs)
|
40 |
+
self.vocab_size = vocab_size
|
41 |
+
self.embed_dim = embed_dim
|
42 |
+
|
43 |
+
def build(self, input_shape):
|
44 |
+
self.shared_weights = self.add_weight(
|
45 |
+
shape=(self.vocab_size, self.embed_dim),
|
46 |
+
initializer='random_normal',
|
47 |
+
trainable=True,
|
48 |
+
name='shared_weights'
|
49 |
+
)
|
50 |
+
super(SharedEmbedding, self).build(input_shape)
|
51 |
+
|
52 |
+
def call(self, inputs, mode='embedding', temp=0.1):
|
53 |
+
if mode == 'embedding':
|
54 |
+
return tf.nn.embedding_lookup(self.shared_weights, inputs)
|
55 |
+
elif mode == 'classify':
|
56 |
+
sw = tf.nn.l2_normalize(self.shared_weights, axis=-1)
|
57 |
+
return tf.nn.softmax(tf.matmul(inputs, sw, transpose_b=True)/temp, axis=-1)
|
58 |
+
|
59 |
+
|
60 |
+
# Attention Layer
|
61 |
+
class Attention(keras.layers.Layer):
|
62 |
+
def __init__(self, **kwargs):
|
63 |
+
super(Attention, self).__init__(**kwargs)
|
64 |
+
|
65 |
+
def build(self, input_shape):
|
66 |
+
self.embed_dim = input_shape[-1]
|
67 |
+
self.mask = tf.where(tf.linalg.band_part(tf.ones((input_shape[-2], input_shape[-2])), -1, 0) == 1.0, 0.0, float("-inf"))
|
68 |
+
self.range_do = -tf.range(input_shape[-2])-1
|
69 |
+
self.range_undo = tf.range(input_shape[-2])+1
|
70 |
+
self.Q = self.add_weight(name='kernelQ',
|
71 |
+
shape=(input_shape[-1], input_shape[-1]),
|
72 |
+
initializer='uniform',
|
73 |
+
trainable=True)
|
74 |
+
self.K = self.add_weight(name='kernelK',
|
75 |
+
shape=(input_shape[-1], input_shape[-1]),
|
76 |
+
initializer='uniform',
|
77 |
+
trainable=True)
|
78 |
+
self.V = self.add_weight(name='kernelV',
|
79 |
+
shape=(input_shape[-1], input_shape[-1]),
|
80 |
+
initializer='uniform',
|
81 |
+
trainable=True)
|
82 |
+
super(Attention, self).build(input_shape)
|
83 |
+
|
84 |
+
def roll_embeddings(self, tensor, shift_values):
|
85 |
+
batch_size, time_size, embed_dim = tensor.shape
|
86 |
+
if batch_size is None: return tensor
|
87 |
+
shift_matrix = tf.reshape(shift_values, (1, -1, 1))
|
88 |
+
shift_matrix = tf.tile(shift_matrix, [batch_size, 1, embed_dim])
|
89 |
+
indices = tf.range(embed_dim)
|
90 |
+
indices_matrix = tf.tile(indices, [batch_size * time_size])
|
91 |
+
indices_matrix = tf.reshape(indices_matrix, (batch_size, time_size, embed_dim))
|
92 |
+
new_indices = (indices_matrix + shift_matrix) % embed_dim
|
93 |
+
rolled_tensor = tf.gather(tensor, new_indices, batch_dims=2)
|
94 |
+
return rolled_tensor
|
95 |
+
|
96 |
+
def call(self, x, pos):
|
97 |
+
q = x @ self.Q
|
98 |
+
k = x @ self.K
|
99 |
+
v = x @ self.V
|
100 |
+
atti = tf.matmul(q, k, transpose_b=True)
|
101 |
+
attp = tf.matmul(q, pos, transpose_b=True)
|
102 |
+
attp = self.roll_embeddings(attp, self.range_do)
|
103 |
+
att = atti + attp
|
104 |
+
att = tf.nn.softmax((att / math.sqrt(self.embed_dim)) + self.mask, axis=-1)
|
105 |
+
outi = att @ v
|
106 |
+
attp = self.roll_embeddings(att, self.range_undo)
|
107 |
+
outp = attp @ pos
|
108 |
+
out = outi + outp
|
109 |
+
return out
|
110 |
+
|
111 |
+
|
112 |
+
# Encoder
|
113 |
+
inputs = Input(shape=(input_size, ), dtype=tf.int32)
|
114 |
+
emb_layer = SharedEmbedding(vocab_size, embed_dim)
|
115 |
+
pos_layer = keras_nlp.layers.PositionEmbedding(input_size)
|
116 |
+
|
117 |
+
x = LayerNormalization()(emb_layer(inputs, mode="embedding"))
|
118 |
+
pos = pos_layer(x)
|
119 |
+
|
120 |
+
b = 6
|
121 |
+
for _ in range(b):
|
122 |
+
x += (2*b)**-0.5 * LayerNormalization()(Attention()(x, pos))
|
123 |
+
x += (2*b)**-0.5 * LayerNormalization()(Dense(embed_dim, activation="gelu")(x))
|
124 |
+
x = tf.nn.l2_normalize(x, axis=-1)
|
125 |
+
|
126 |
+
for _ in range(b):
|
127 |
+
x1 = Dense(embed_dim, activation="gelu")(x)
|
128 |
+
x1 = Dense(embed_dim, activation="gelu")(x1)
|
129 |
+
x += b**-0.5 * LayerNormalization()(x1)
|
130 |
+
x = tf.nn.l2_normalize(x, axis=-1)
|
131 |
+
|
132 |
+
x = emb_layer(x, mode="classify", temp=0.1)
|
133 |
+
|
134 |
+
model = keras.Model(inputs=inputs, outputs=x)
|
135 |
+
model.compile(
|
136 |
+
loss=keras.losses.SparseCategoricalCrossentropy(ignore_class=tokenizer.pad_token_id),
|
137 |
+
optimizer=keras.optimizers.AdamW(learning_rate=0.001),
|
138 |
+
metrics=[masked_accuracy, keras_nlp.metrics.Perplexity(mask_token_id=tokenizer.pad_token_id)],
|
139 |
+
)
|
140 |
+
|
141 |
+
|
142 |
+
# Import Model
|
143 |
+
model.load_weights("rpc.keras")
|
144 |
+
encoder = keras.Model(inputs=model.layers[0].input, outputs=model.layers[52].output)
|
145 |
+
encoder.summary()
|
146 |
+
|
147 |
+
|
148 |
+
# Vectorize Function
|
149 |
+
def vectorize_texts(all_texts):
|
150 |
+
batch_size = 128
|
151 |
+
vects = []
|
152 |
+
for i in range(0, len(all_texts), batch_size):
|
153 |
+
texts = all_texts[i:i+batch_size]
|
154 |
+
toks = [text + ([tokenizer.pad_token_id] * (input_size - len(text))) for text in texts]
|
155 |
+
if len(toks) > 0:
|
156 |
+
toks = tf.constant(toks, shape=(len(toks), input_size))
|
157 |
+
vect = encoder.predict(toks, verbose=0)
|
158 |
+
for v, t in zip(vect, texts):
|
159 |
+
vects.append(v[:len(t), :])
|
160 |
+
return tf.concat(vects, axis=0).numpy()
|
161 |
+
|
162 |
+
|
163 |
+
# Import Database and All Toks
|
164 |
+
index = None
|
165 |
+
all_toks = None
|
166 |
+
def load_index(index_path="/dev/shm/rpc-vecdb/index"):
|
167 |
+
global index
|
168 |
+
global all_toks
|
169 |
+
#import ngtpy
|
170 |
+
#index = ngtpy.Index(index_path, read_only=True)
|
171 |
+
import faiss
|
172 |
+
index = faiss.read_index(index_path + "/index.faiss")
|
173 |
+
with open(index_path + "/all_toks.json", "r") as f:
|
174 |
+
all_toks = json.loads(f.read())
|
175 |
+
|
176 |
+
|
177 |
+
# Generate Function
|
178 |
+
def generate(text, use_rpc=True, max_tokens=128):
|
179 |
+
enc_text = tokenizer.encode(text, add_special_tokens=False)
|
180 |
+
|
181 |
+
i = 0
|
182 |
+
while i < max_tokens and tok != vocab_size - 2:
|
183 |
+
|
184 |
+
enc_text = enc_text[-input_size:]
|
185 |
+
if use_rpc:
|
186 |
+
xq = vectorize_texts([enc_text])[-1]
|
187 |
+
#_id, _ = index.search(xq, size=1, epsilon=2)[0]
|
188 |
+
D, I = index.search(xq.reshape((1, -1)), 1)
|
189 |
+
_id = I[0][0]
|
190 |
+
if all_toks[_id] in carry_toks:
|
191 |
+
tmp = tf.argmax(tf.matmul(xq.reshape((1, -1)), encoder.layers[1].shared_weights, transpose_b=True), axis=-1).numpy()[0]
|
192 |
+
if all_toks[tmp] in enc_text: tok = tmp
|
193 |
+
else: tok = all_toks[_id]
|
194 |
+
else: tok = all_toks[_id]
|
195 |
+
else:
|
196 |
+
ins = enc_text + [tokenizer.pad_token_id] * (input_size - len(enc_text))
|
197 |
+
ins = tf.constant(ins, shape=(1, input_size))
|
198 |
+
res = model.predict(ins, verbose=0)[0][len(enc_text)-1]
|
199 |
+
tok = tf.argmax(res, axis=-1).numpy().tolist()
|
200 |
+
|
201 |
+
enc_text += [tok]
|
202 |
+
new_text = tokenizer.decode(enc_text)
|
203 |
+
tok_str = new_text[len(text):]
|
204 |
+
text = new_text
|
205 |
+
|
206 |
+
yield tok_str
|