Spaces:
Runtime error
Runtime error
Update rpc.py
Browse files
rpc.py
CHANGED
@@ -53,17 +53,18 @@ class SharedEmbedding(tf.keras.layers.Layer):
|
|
53 |
if mode == 'embedding':
|
54 |
return tf.nn.embedding_lookup(self.shared_weights, inputs)
|
55 |
elif mode == 'classify':
|
56 |
-
|
57 |
-
return tf.nn.softmax(tf.matmul(inputs, sw, transpose_b=True)/temp, axis=-1)
|
58 |
|
59 |
|
60 |
# Attention Layer
|
61 |
-
class
|
62 |
-
def __init__(self, **kwargs):
|
63 |
-
super(
|
|
|
64 |
|
65 |
def build(self, input_shape):
|
66 |
self.embed_dim = input_shape[-1]
|
|
|
67 |
self.mask = tf.where(tf.linalg.band_part(tf.ones((input_shape[-2], input_shape[-2])), -1, 0) == 1.0, 0.0, float("-inf"))
|
68 |
self.range_do = -tf.range(input_shape[-2])-1
|
69 |
self.range_undo = tf.range(input_shape[-2])+1
|
@@ -79,7 +80,22 @@ class Attention(keras.layers.Layer):
|
|
79 |
shape=(input_shape[-1], input_shape[-1]),
|
80 |
initializer='uniform',
|
81 |
trainable=True)
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
def roll_embeddings(self, tensor, shift_values):
|
85 |
batch_size, time_size, embed_dim = tensor.shape
|
@@ -93,55 +109,43 @@ class Attention(keras.layers.Layer):
|
|
93 |
rolled_tensor = tf.gather(tensor, new_indices, batch_dims=2)
|
94 |
return rolled_tensor
|
95 |
|
96 |
-
def call(self, x, pos):
|
97 |
-
q = x @ self.Q
|
98 |
-
k = x @ self.K
|
99 |
v = x @ self.V
|
|
|
|
|
100 |
atti = tf.matmul(q, k, transpose_b=True)
|
101 |
attp = tf.matmul(q, pos, transpose_b=True)
|
102 |
-
attp = self.roll_embeddings(attp, self.range_do)
|
|
|
103 |
att = atti + attp
|
104 |
att = tf.nn.softmax((att / math.sqrt(self.embed_dim)) + self.mask, axis=-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
outi = att @ v
|
106 |
attp = self.roll_embeddings(att, self.range_undo)
|
107 |
-
outp = attp @
|
108 |
out = outi + outp
|
|
|
109 |
return out
|
110 |
|
111 |
|
112 |
-
# Encoder
|
113 |
-
inputs = Input(shape=(input_size, ), dtype=tf.int32)
|
114 |
-
emb_layer = SharedEmbedding(vocab_size, embed_dim)
|
115 |
-
pos_layer = keras_nlp.layers.PositionEmbedding(input_size)
|
116 |
-
|
117 |
-
x = LayerNormalization()(emb_layer(inputs, mode="embedding"))
|
118 |
-
pos = pos_layer(x)
|
119 |
-
|
120 |
-
b = 6
|
121 |
-
for _ in range(b):
|
122 |
-
x += (2*b)**-0.5 * LayerNormalization()(Attention()(x, pos))
|
123 |
-
x += (2*b)**-0.5 * LayerNormalization()(Dense(embed_dim, activation="gelu")(x))
|
124 |
-
x = tf.nn.l2_normalize(x, axis=-1)
|
125 |
-
|
126 |
-
for _ in range(b):
|
127 |
-
x1 = Dense(embed_dim, activation="gelu")(x)
|
128 |
-
x1 = Dense(embed_dim, activation="gelu")(x1)
|
129 |
-
x += b**-0.5 * LayerNormalization()(x1)
|
130 |
-
x = tf.nn.l2_normalize(x, axis=-1)
|
131 |
-
|
132 |
-
x = emb_layer(x, mode="classify", temp=0.1)
|
133 |
-
|
134 |
-
model = keras.Model(inputs=inputs, outputs=x)
|
135 |
-
model.compile(
|
136 |
-
loss=keras.losses.SparseCategoricalCrossentropy(ignore_class=tokenizer.pad_token_id),
|
137 |
-
optimizer=keras.optimizers.AdamW(learning_rate=0.001),
|
138 |
-
metrics=[masked_accuracy, keras_nlp.metrics.Perplexity(mask_token_id=tokenizer.pad_token_id)],
|
139 |
-
)
|
140 |
-
|
141 |
-
|
142 |
# Import Model
|
143 |
-
model.
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
encoder.summary()
|
146 |
|
147 |
|
@@ -166,10 +170,10 @@ all_toks = None
|
|
166 |
def load_index(index_path="/dev/shm/rpc-vecdb/index"):
|
167 |
global index
|
168 |
global all_toks
|
169 |
-
|
170 |
-
|
171 |
-
import faiss
|
172 |
-
index = faiss.read_index(index_path + "/index.faiss")
|
173 |
with open(index_path + "/all_toks.json", "r") as f:
|
174 |
all_toks = json.loads(f.read())
|
175 |
|
@@ -184,14 +188,15 @@ def generate(text, use_rpc=True, max_tokens=128):
|
|
184 |
enc_text = enc_text[-input_size:]
|
185 |
if use_rpc:
|
186 |
xq = vectorize_texts([enc_text])[-1]
|
187 |
-
|
188 |
-
|
189 |
-
_id = I[0][0]
|
190 |
if all_toks[_id] in carry_toks:
|
191 |
tmp = tf.argmax(tf.matmul(xq.reshape((1, -1)), encoder.layers[1].shared_weights, transpose_b=True), axis=-1).numpy()[0]
|
192 |
-
if
|
|
|
193 |
else: tok = all_toks[_id]
|
194 |
-
else:
|
|
|
195 |
else:
|
196 |
ins = enc_text + [tokenizer.pad_token_id] * (input_size - len(enc_text))
|
197 |
ins = tf.constant(ins, shape=(1, input_size))
|
@@ -199,6 +204,8 @@ def generate(text, use_rpc=True, max_tokens=128):
|
|
199 |
tok = tf.argmax(res, axis=-1).numpy().tolist()
|
200 |
|
201 |
enc_text += [tok]
|
202 |
-
|
|
|
|
|
203 |
|
204 |
-
yield
|
|
|
53 |
if mode == 'embedding':
|
54 |
return tf.nn.embedding_lookup(self.shared_weights, inputs)
|
55 |
elif mode == 'classify':
|
56 |
+
return tf.nn.softmax(tf.matmul(inputs, self.shared_weights, transpose_b=True), axis=-1)
|
|
|
57 |
|
58 |
|
59 |
# Attention Layer
|
60 |
+
class DiffAttention(keras.layers.Layer):
|
61 |
+
def __init__(self, depth, **kwargs):
|
62 |
+
super(DiffAttention, self).__init__(**kwargs)
|
63 |
+
self.lambda_init = 0.8 - 0.6 * math.exp(-0.3 * depth)
|
64 |
|
65 |
def build(self, input_shape):
|
66 |
self.embed_dim = input_shape[-1]
|
67 |
+
self.input_size = input_shape[-2]
|
68 |
self.mask = tf.where(tf.linalg.band_part(tf.ones((input_shape[-2], input_shape[-2])), -1, 0) == 1.0, 0.0, float("-inf"))
|
69 |
self.range_do = -tf.range(input_shape[-2])-1
|
70 |
self.range_undo = tf.range(input_shape[-2])+1
|
|
|
80 |
shape=(input_shape[-1], input_shape[-1]),
|
81 |
initializer='uniform',
|
82 |
trainable=True)
|
83 |
+
|
84 |
+
initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.1)
|
85 |
+
self.lambda_q1 = self.add_weight(
|
86 |
+
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_q1"
|
87 |
+
)
|
88 |
+
self.lambda_k1 = self.add_weight(
|
89 |
+
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_k1"
|
90 |
+
)
|
91 |
+
self.lambda_q2 = self.add_weight(
|
92 |
+
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_q2"
|
93 |
+
)
|
94 |
+
self.lambda_k2 = self.add_weight(
|
95 |
+
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_k2"
|
96 |
+
)
|
97 |
+
|
98 |
+
super(DiffAttention, self).build(input_shape)
|
99 |
|
100 |
def roll_embeddings(self, tensor, shift_values):
|
101 |
batch_size, time_size, embed_dim = tensor.shape
|
|
|
109 |
rolled_tensor = tf.gather(tensor, new_indices, batch_dims=2)
|
110 |
return rolled_tensor
|
111 |
|
112 |
+
def call(self, x, pos, pos_src):
|
|
|
|
|
113 |
v = x @ self.V
|
114 |
+
q = tf.transpose(tf.reshape(x @ self.Q, (-1, self.input_size, 2, self.embed_dim//2)), perm=[0, 2, 1, 3])
|
115 |
+
k = tf.transpose(tf.reshape(x @ self.K, (-1, self.input_size, 2, self.embed_dim//2)), perm=[0, 2, 1, 3])
|
116 |
atti = tf.matmul(q, k, transpose_b=True)
|
117 |
attp = tf.matmul(q, pos, transpose_b=True)
|
118 |
+
attp = self.roll_embeddings(tf.reshape(attp, (-1, self.input_size, self.input_size)), self.range_do)
|
119 |
+
attp = tf.reshape(attp, (-1, 2, self.input_size, self.input_size))
|
120 |
att = atti + attp
|
121 |
att = tf.nn.softmax((att / math.sqrt(self.embed_dim)) + self.mask, axis=-1)
|
122 |
+
att1 = att[:, 0]
|
123 |
+
att2 = att[:, 1]
|
124 |
+
|
125 |
+
# Differential attention
|
126 |
+
lambda_1 = tf.math.exp(tf.reduce_sum(self.lambda_q1 * self.lambda_k1, axis=-1))
|
127 |
+
lambda_2 = tf.math.exp(tf.reduce_sum(self.lambda_q2 * self.lambda_k2, axis=-1))
|
128 |
+
lambda_full = lambda_1 - lambda_2 + self.lambda_init
|
129 |
+
att = att1 - lambda_full * att2
|
130 |
+
|
131 |
outi = att @ v
|
132 |
attp = self.roll_embeddings(att, self.range_undo)
|
133 |
+
outp = attp @ pos_src
|
134 |
out = outi + outp
|
135 |
+
out = out * (1 - self.lambda_init)
|
136 |
return out
|
137 |
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
# Import Model
|
140 |
+
model = keras.models.load_model(
|
141 |
+
"rpc_diff_12b_320inp_ct4_01w10.keras",
|
142 |
+
custom_objects={
|
143 |
+
"DiffAttention" : DiffAttention,
|
144 |
+
"SharedEmbedding" : SharedEmbedding,
|
145 |
+
"masked_accuracy" : masked_accuracy
|
146 |
+
}
|
147 |
+
)
|
148 |
+
encoder = keras.Model(inputs=model.layers[0].input, outputs=model.layers[-1].output)
|
149 |
encoder.summary()
|
150 |
|
151 |
|
|
|
170 |
def load_index(index_path="/dev/shm/rpc-vecdb/index"):
|
171 |
global index
|
172 |
global all_toks
|
173 |
+
import ngtpy
|
174 |
+
index = ngtpy.Index(index_path, read_only=True)
|
175 |
+
#import faiss
|
176 |
+
#index = faiss.read_index(index_path + "/index.faiss")
|
177 |
with open(index_path + "/all_toks.json", "r") as f:
|
178 |
all_toks = json.loads(f.read())
|
179 |
|
|
|
188 |
enc_text = enc_text[-input_size:]
|
189 |
if use_rpc:
|
190 |
xq = vectorize_texts([enc_text])[-1]
|
191 |
+
_id = index.search(xq, size=1, epsilon=2)[0][0]
|
192 |
+
#_id = index.search(xq.reshape((1, -1)), 1)[1][0][0]
|
|
|
193 |
if all_toks[_id] in carry_toks:
|
194 |
tmp = tf.argmax(tf.matmul(xq.reshape((1, -1)), encoder.layers[1].shared_weights, transpose_b=True), axis=-1).numpy()[0]
|
195 |
+
if tmp in enc_text:
|
196 |
+
tok = tmp
|
197 |
else: tok = all_toks[_id]
|
198 |
+
else:
|
199 |
+
tok = all_toks[_id]
|
200 |
else:
|
201 |
ins = enc_text + [tokenizer.pad_token_id] * (input_size - len(enc_text))
|
202 |
ins = tf.constant(ins, shape=(1, input_size))
|
|
|
204 |
tok = tf.argmax(res, axis=-1).numpy().tolist()
|
205 |
|
206 |
enc_text += [tok]
|
207 |
+
new_text = tokenizer.decode(enc_text)
|
208 |
+
res = new_text[len(text):]
|
209 |
+
text = new_text
|
210 |
|
211 |
+
yield res
|