import tensorflow as tf from tensorflow import keras from keras.layers import * import keras_nlp import subprocess import math import json import spacy from transformers import AutoTokenizer from tokenizers import AddedToken # Config input_size = 320#512 embed_dim = 128 # Tokenizer tokenizer = AutoTokenizer.from_pretrained('google/t5-v1_1-base') tokenizer.add_tokens(AddedToken("\n", normalized=False)) tokenizer.add_tokens(AddedToken("", normalized=False)) vocab_size = len(tokenizer.get_vocab().keys()) print("vocab_size:", vocab_size) print("pad token id:", tokenizer.pad_token) subprocess.run(["python", "-m", "spacy", "download", "en_core_web_lg"], check=True) nlp = spacy.load("en_core_web_lg") nlp.max_length = 2000000 selected = {'NUM', 'PROPN'} alltoks = sorted(list(tokenizer.get_vocab().items()), key=lambda x:x[1]) all_toks_text = "\n".join([t[0].replace("▁", "") for t in alltoks]) doc = nlp(all_toks_text) carry_toks = set() i = 0 for ii, token in enumerate(doc): if str(token) in alltoks[i][0]: pass else: i += 1 if str(token) in alltoks[i][0] and token.pos_ in selected and i > 100: if (token.pos_ != "PROPN" or alltoks[i][0].replace("▁", "")[0].isupper()): carry_toks.add(alltoks[i][1]) print(len(carry_toks)) # Masked Accuracy Metric def masked_accuracy(y_true, y_pred, padding_token=tokenizer.pad_token_id): y_true = tf.cast(y_true, tf.int32) y_pred = tf.cast(tf.argmax(y_pred, axis=-1), tf.int32) mask = tf.cast(tf.not_equal(y_true, padding_token), tf.float32) matches = tf.cast(tf.equal(y_true, y_pred), tf.float32) accuracy = tf.reduce_sum(matches * mask) / tf.reduce_sum(mask) return accuracy # Embedding Layer class SharedEmbedding(tf.keras.layers.Layer): def __init__(self, vocab_size, embed_dim, **kwargs): super(SharedEmbedding, self).__init__(**kwargs) self.vocab_size = vocab_size self.embed_dim = embed_dim def build(self, input_shape): self.shared_weights = self.add_weight( shape=(self.vocab_size, self.embed_dim), initializer='random_normal', trainable=True, name='shared_weights' ) super(SharedEmbedding, self).build(input_shape) def call(self, inputs, mode='embedding', temp=0.1): if mode == 'embedding': return tf.nn.embedding_lookup(self.shared_weights, inputs) elif mode == 'classify': return tf.nn.softmax(tf.matmul(inputs, self.shared_weights, transpose_b=True), axis=-1) # Attention Layer class DiffAttention(keras.layers.Layer): def __init__(self, depth, **kwargs): super(DiffAttention, self).__init__(**kwargs) self.lambda_init = 0.8 - 0.6 * math.exp(-0.3 * depth) def build(self, input_shape): self.embed_dim = input_shape[-1] self.input_size = input_shape[-2] self.mask = tf.where(tf.linalg.band_part(tf.ones((input_shape[-2], input_shape[-2])), -1, 0) == 1.0, 0.0, float("-inf")) self.range_do = -tf.range(input_shape[-2])-1 self.range_undo = tf.range(input_shape[-2])+1 self.Q = self.add_weight(name='kernelQ', shape=(input_shape[-1], input_shape[-1]), initializer='uniform', trainable=True) self.K = self.add_weight(name='kernelK', shape=(input_shape[-1], input_shape[-1]), initializer='uniform', trainable=True) self.V = self.add_weight(name='kernelV', shape=(input_shape[-1], input_shape[-1]), initializer='uniform', trainable=True) initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.1) self.lambda_q1 = self.add_weight( shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_q1" ) self.lambda_k1 = self.add_weight( shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_k1" ) self.lambda_q2 = self.add_weight( shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_q2" ) self.lambda_k2 = self.add_weight( shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_k2" ) super(DiffAttention, self).build(input_shape) def roll_embeddings(self, tensor, shift_values): batch_size, time_size, embed_dim = tensor.shape if batch_size is None: return tensor shift_matrix = tf.reshape(shift_values, (1, -1, 1)) shift_matrix = tf.tile(shift_matrix, [batch_size, 1, embed_dim]) indices = tf.range(embed_dim) indices_matrix = tf.tile(indices, [batch_size * time_size]) indices_matrix = tf.reshape(indices_matrix, (batch_size, time_size, embed_dim)) new_indices = (indices_matrix + shift_matrix) % embed_dim rolled_tensor = tf.gather(tensor, new_indices, batch_dims=2) return rolled_tensor def call(self, x, pos, pos_src): v = x @ self.V q = tf.transpose(tf.reshape(x @ self.Q, (-1, self.input_size, 2, self.embed_dim//2)), perm=[0, 2, 1, 3]) k = tf.transpose(tf.reshape(x @ self.K, (-1, self.input_size, 2, self.embed_dim//2)), perm=[0, 2, 1, 3]) atti = tf.matmul(q, k, transpose_b=True) attp = tf.matmul(q, pos, transpose_b=True) attp = self.roll_embeddings(tf.reshape(attp, (-1, self.input_size, self.input_size)), self.range_do) attp = tf.reshape(attp, (-1, 2, self.input_size, self.input_size)) att = atti + attp att = tf.nn.softmax((att / math.sqrt(self.embed_dim)) + self.mask, axis=-1) att1 = att[:, 0] att2 = att[:, 1] # Differential attention lambda_1 = tf.math.exp(tf.reduce_sum(self.lambda_q1 * self.lambda_k1, axis=-1)) lambda_2 = tf.math.exp(tf.reduce_sum(self.lambda_q2 * self.lambda_k2, axis=-1)) lambda_full = lambda_1 - lambda_2 + self.lambda_init att = att1 - lambda_full * att2 out = att @ v out = out * (1 - self.lambda_init) return out # Import Model model = keras.models.load_model( "rpc.keras", custom_objects={ "DiffAttention" : DiffAttention, "SharedEmbedding" : SharedEmbedding, "masked_accuracy" : masked_accuracy } ) encoder = keras.Model(inputs=model.layers[0].input, outputs=model.layers[-1].output) encoder.summary() # Vectorize Function def vectorize_texts(all_texts): batch_size = 128 vects = [] for i in range(0, len(all_texts), batch_size): texts = all_texts[i:i+batch_size] toks = [text + ([tokenizer.pad_token_id] * (input_size - len(text))) for text in texts] if len(toks) > 0: toks = tf.constant(toks, shape=(len(toks), input_size)) vect = encoder.predict(toks, verbose=0) for v, t in zip(vect, texts): vects.append(v[:len(t), :]) return tf.concat(vects, axis=0).numpy() # Import Database and All Toks index = None all_toks = None index_type = None def load_index(index_path="/dev/shm/rpc-vecdb/index", idx_type="ngt"): global index global all_toks global index_type index_type = idx_type if idx_type == "ngt": import ngtpy index = ngtpy.Index(index_path, read_only=True) elif idx_type == "faiss": import faiss index = faiss.read_index(index_path + "/index.faiss") else: raise ValueError("Unknown index type") with open(index_path + "/all_toks.json", "r") as f: all_toks = json.loads(f.read()) # Generate Function def generate(text, use_rpc=True, max_tokens=128): enc_text = tokenizer.encode(text, add_special_tokens=False) text = tokenizer.decode(enc_text) tok = None i = 0 while i < max_tokens and tok != vocab_size - 2: enc_text = enc_text[-input_size:] if use_rpc: xq = vectorize_texts([enc_text])[-1] if index_type == "ngt": _id = index.search(xq, size=1, epsilon=1)[0][0] else: _id = index.search(xq.reshape((1, -1)), 1)[1][0][0] if all_toks[_id] in carry_toks: tmp = tf.argmax(tf.matmul(xq.reshape((1, -1)), encoder.layers[1].shared_weights, transpose_b=True), axis=-1).numpy()[0] if tmp in enc_text: tok = tmp else: tok = all_toks[_id] else: tok = all_toks[_id] else: ins = enc_text + [tokenizer.pad_token_id] * (input_size - len(enc_text)) ins = tf.constant(ins, shape=(1, input_size)) res = model.predict(ins, verbose=0)[0][len(enc_text)-1] tok = tf.argmax(res, axis=-1).numpy().tolist() enc_text += [tok] new_text = tokenizer.decode(enc_text) res = new_text[len(text):] text = new_text yield res