File size: 9,239 Bytes
8eca078
 
 
 
 
 
 
 
 
 
 
f8b3a66
8eca078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebe933f
8eca078
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import sys
sys.path.append('miniminiai/miniminiai')

import torchvision, torch
import fastcore.all as fc
import gradio as gr
from miniminiai import *
import numpy as np
from PIL import Image, ImageOps, ImageDraw
from torch import nn, tensor
from torch.utils.data import DataLoader
from torch.nn import functional as F
from torchvision import models, transforms


class LengthDataset():
    def __init__(self, length=1): self.length=length
    def __len__(self): return self.length
    def __getitem__(self, idx): return 0,0


def get_dummy_dls(length=100):
    return DataLoaders(DataLoader(LengthDataset(length), batch_size=1), # Train
                       DataLoader(LengthDataset(1), batch_size=1))      # Valid (length 1)


class TensorModel(nn.Module):
    def __init__(self, t):
        super().__init__()
        self.t = nn.Parameter(t.clone())
    def forward(self, x=0): return self.t


class ImageOptCB(TrainCB):
    def predict(self, learn): learn.preds = learn.model()
    def get_loss(self, learn): learn.loss = learn.loss_func(learn.preds)


def calc_features(imgs, target_layers=(18, 25)):
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    x = normalize(imgs)
    feats = [] 
    for i, layer in enumerate(vgg16[:max(target_layers)+1]):
        x = layer(x)
        if i in target_layers:
            feats.append(x.clone())
    return feats


class ContentLossToTarget():
    def __init__(self, target_im, target_layers=(18, 25)):
        fc.store_attr()
        with torch.no_grad():
            self.target_features = calc_features(target_im, target_layers)
    def __call__(self, input_im): 
        return sum((f1-f2).pow(2).mean() for f1, f2 in 
               zip(calc_features(input_im, self.target_layers), self.target_features))

def calc_grams(img, target_layers=(1, 6, 11, 18, 25)):
    return fc.L(torch.einsum('chw, dhw -> cd', x, x) / (x.shape[-2]*x.shape[-1]) # 'bchw, bdhw -> bcd' if batched
            for x in calc_features(img, target_layers))
    

class StyleLossToTarget():
    def __init__(self, target_im, target_layers=(1, 6, 11, 18, 25), size=394):
        fc.store_attr()
        with torch.no_grad(): self.target_grams = calc_grams(target_im, target_layers)
    def __call__(self, input_im): 
        return sum((f1-f2).pow(2).mean() for f1, f2 in 
               zip(calc_grams(input_im, self.target_layers), self.target_grams))


class OTStyleLossToTarget(nn.Module):
  def __init__(self, target, size=128, style_layers = [1, 6, 11, 18, 25], scale_factor=2e-5):
    super(OTStyleLossToTarget, self).__init__()
    self.device = device
    self.resize = transforms.Compose([transforms.Resize(size), transforms.CenterCrop(size)])
    self.target = self.resize(target) # resize target image to size
    self.style_layers = style_layers
    self.scale_factor = scale_factor # Defaults tend to be very large, we scale to make them easier to work with
    with torch.no_grad():
      self.target_features = calc_features(self.target, self.style_layers)

  def project_sort(self, x, proj):
    return torch.einsum('bcn,cp->bpn', x, proj).sort()[0]

  def ot_loss(self, source, target, proj_n=32):
    ch, n = source.shape[-2:]
    projs = F.normalize(torch.randn(ch, proj_n).to(self.device), dim=0)
    source_proj = self.project_sort(source, projs)
    target_proj = self.project_sort(target, projs)
    target_interp = F.interpolate(target_proj, n, mode='nearest')
    return (source_proj-target_interp).square().sum()

  def forward(self, input):
    input = self.resize(input) # set size (assumes square images)
    input_features = calc_features(input, self.style_layers)

    l = 0
    # Run through all features and take l1 loss (mean error) between them
    return sum(self.ot_loss(x, y) for x, y in zip(input_features, self.target_features)) * self.scale_factor


class VincentStyleLossToTarget(nn.Module):
  def __init__(self, target, size=128, style_layers = [1, 6, 11, 18, 25], scale_factor=1e-5):
    super(VincentStyleLossToTarget, self).__init__()
    self.resize = transforms.Compose([transforms.Resize(size), transforms.CenterCrop(size)])
    self.target = self.resize(target) # resize target image to size
    self.style_layers = style_layers
    self.scale_factor = scale_factor # Defaults tend to be very large, we scale to make them easier to work with
    with torch.no_grad():
      self.target_features = calc_features(self.target, self.style_layers)

  def calc_2_moments(self, x):
    c, w, h = x.shape
    x = x.reshape(1, c, w*h) # b, c, n
    mu = x.mean(dim=-1, keepdim=True) # b, c, 1
    cov = torch.matmul(x-mu, torch.transpose(x-mu, -1, -2))
    return mu, cov

  def matrix_diag(self, diagonal):
    N = diagonal.shape[-1]
    shape = diagonal.shape[:-1] + (N, N)
    device, dtype = diagonal.device, diagonal.dtype
    result = torch.zeros(shape, dtype=dtype, device=device)
    indices = torch.arange(result.numel(), device=device).reshape(shape)
    indices = indices.diagonal(dim1=-2, dim2=-1)
    result.view(-1)[indices] = diagonal
    return result

  def l2wass_dist(self, mean_stl, cov_stl, mean_synth, cov_synth):
        
    # Calculate tr_cov and root_cov from mean_stl and cov_stl
    eigvals,eigvects = torch.linalg.eigh(cov_stl) # eig returns complex tensors, I think eigh matches tf self_adjoint_eig
    eigroot_mat = self.matrix_diag(torch.sqrt(eigvals.clip(0)))
    root_cov_stl = torch.matmul(torch.matmul(eigvects, eigroot_mat),torch.transpose(eigvects, -1, -2))
    tr_cov_stl = torch.sum(eigvals.clip(0), dim=1, keepdim=True)

    tr_cov_synth = torch.sum(torch.linalg.eigvalsh(cov_synth).clip(0), dim=1, keepdim=True)
    mean_diff_squared = torch.mean((mean_synth - mean_stl)**2)
    cov_prod = torch.matmul(torch.matmul(root_cov_stl,cov_synth),root_cov_stl)
    var_overlap = torch.sum(torch.sqrt(torch.linalg.eigvalsh(cov_prod).clip(0.1)), dim=1, keepdim=True) # .clip(0) meant errors getting eigvals 
    dist = mean_diff_squared+tr_cov_stl+tr_cov_synth-2*var_overlap
    return dist

  def forward(self, input):
    input = self.resize(input) # set size (assumes square images, center crops otherwise)
    input_features = calc_features(input, self.style_layers) # get features
    l = 0
    for x, y in zip(input_features, self.target_features):
      mean_synth, cov_synth = self.calc_2_moments(x) # input mean and cov
      mean_stl, cov_stl = self.calc_2_moments(y) # target mean and cov
      l += self.l2wass_dist(mean_stl, cov_stl, mean_synth, cov_synth) 
    return l.mean() * self.scale_factor


def image_grid(imgs, rows, cols):
    assert len(imgs) == rows*cols
    w, h = imgs[0].size
    grid = Image.new('RGB', size=(cols*w, rows*h))
    grid_w, grid_h = grid.size
    
    for i, img in enumerate(imgs):
        grid.paste(img.resize((w, h)), box=(i%cols*w, i//cols*h))
    
    grid = ImageOps.expand(grid, border=20, fill=(255,255,255))
    draw = ImageDraw.Draw(grid)
    # # fnt = ImageFont.truetype("Pillow/Tests/fonts/FreeMono.ttf", )
    # draw.text((0,0),"Sample Text",(0,0,0))
    return grid


def style_image(content_image, style_image, style_losses):
    data = []
    content_image = content_image.resize((384, 384))
    style_image = style_image.resize((384, 384))
    output = [content_image]
    content_image = torch.tensor(np.array(content_image).astype(np.float32) / 255.).permute(2, 0, 1)
    style_image = torch.tensor(np.array(style_image).astype(np.float32) / 255.).permute(2, 0, 1)
    content_loss = ContentLossToTarget(content_image.to(device))
    sim = style_image.to(device)
    for style_loss in style_losses:
      style_loss = map_style_losses[style_loss](sim, size=384)
      model = TensorModel(content_image)
      def combined_loss(x): return style_loss(x) + content_loss(x)
      learn = Learner(model, get_dummy_dls(150), combined_loss, lr=1e-2, cbs=[ImageOptCB(), DeviceCB()], opt_func=torch.optim.Adam)
      learn.fit(1)
      im = to_cpu(learn.preds.clip(0, 1))
      output.append(Image.fromarray((im.permute(1, 2, 0).numpy()* 255).astype(np.uint8)))
    
    return image_grid(output, 1, len(style_losses) + 1)


def run():
  with gr.Blocks() as demo:
      # gr.Markdown("Start typing below and then click **Run** to see the output.")
      with gr.Row():
        with gr.Column(scale=1):
          content_im = gr.Image(shape=(318, 318), type='pil', label="Content image")
          style_img = gr.Image(shape=(318, 318), type='pil', label="Style image")
          style_losses = gr.CheckboxGroup(["Gram Matrix", "OT-Based", "Vincent's"], value=["Gram Matrix", "OT-Based", "Vincent's"], label="Style Loss")
          btn = gr.Button("Generate")
        with gr.Column(scale=1):
            out = gr.Image(shape=(384, 384))
      btn.click(fn=style_image, inputs=[content_im, style_img, style_losses], outputs=out)


  demo.launch(server_name="0.0.0.0", server_port=7860)


map_style_losses = {
    "Gram Matrix": StyleLossToTarget,
    "OT-Based": OTStyleLossToTarget,
    "Vincent's": VincentStyleLossToTarget
}


if __name__ == "__main__":
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
  vgg16 = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1).to(device)
  vgg16.eval()
  vgg16 = vgg16.features
  run()