Spaces:
Runtime error
Runtime error
File size: 9,239 Bytes
8eca078 f8b3a66 8eca078 ebe933f 8eca078 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import sys
sys.path.append('miniminiai/miniminiai')
import torchvision, torch
import fastcore.all as fc
import gradio as gr
from miniminiai import *
import numpy as np
from PIL import Image, ImageOps, ImageDraw
from torch import nn, tensor
from torch.utils.data import DataLoader
from torch.nn import functional as F
from torchvision import models, transforms
class LengthDataset():
def __init__(self, length=1): self.length=length
def __len__(self): return self.length
def __getitem__(self, idx): return 0,0
def get_dummy_dls(length=100):
return DataLoaders(DataLoader(LengthDataset(length), batch_size=1), # Train
DataLoader(LengthDataset(1), batch_size=1)) # Valid (length 1)
class TensorModel(nn.Module):
def __init__(self, t):
super().__init__()
self.t = nn.Parameter(t.clone())
def forward(self, x=0): return self.t
class ImageOptCB(TrainCB):
def predict(self, learn): learn.preds = learn.model()
def get_loss(self, learn): learn.loss = learn.loss_func(learn.preds)
def calc_features(imgs, target_layers=(18, 25)):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
x = normalize(imgs)
feats = []
for i, layer in enumerate(vgg16[:max(target_layers)+1]):
x = layer(x)
if i in target_layers:
feats.append(x.clone())
return feats
class ContentLossToTarget():
def __init__(self, target_im, target_layers=(18, 25)):
fc.store_attr()
with torch.no_grad():
self.target_features = calc_features(target_im, target_layers)
def __call__(self, input_im):
return sum((f1-f2).pow(2).mean() for f1, f2 in
zip(calc_features(input_im, self.target_layers), self.target_features))
def calc_grams(img, target_layers=(1, 6, 11, 18, 25)):
return fc.L(torch.einsum('chw, dhw -> cd', x, x) / (x.shape[-2]*x.shape[-1]) # 'bchw, bdhw -> bcd' if batched
for x in calc_features(img, target_layers))
class StyleLossToTarget():
def __init__(self, target_im, target_layers=(1, 6, 11, 18, 25), size=394):
fc.store_attr()
with torch.no_grad(): self.target_grams = calc_grams(target_im, target_layers)
def __call__(self, input_im):
return sum((f1-f2).pow(2).mean() for f1, f2 in
zip(calc_grams(input_im, self.target_layers), self.target_grams))
class OTStyleLossToTarget(nn.Module):
def __init__(self, target, size=128, style_layers = [1, 6, 11, 18, 25], scale_factor=2e-5):
super(OTStyleLossToTarget, self).__init__()
self.device = device
self.resize = transforms.Compose([transforms.Resize(size), transforms.CenterCrop(size)])
self.target = self.resize(target) # resize target image to size
self.style_layers = style_layers
self.scale_factor = scale_factor # Defaults tend to be very large, we scale to make them easier to work with
with torch.no_grad():
self.target_features = calc_features(self.target, self.style_layers)
def project_sort(self, x, proj):
return torch.einsum('bcn,cp->bpn', x, proj).sort()[0]
def ot_loss(self, source, target, proj_n=32):
ch, n = source.shape[-2:]
projs = F.normalize(torch.randn(ch, proj_n).to(self.device), dim=0)
source_proj = self.project_sort(source, projs)
target_proj = self.project_sort(target, projs)
target_interp = F.interpolate(target_proj, n, mode='nearest')
return (source_proj-target_interp).square().sum()
def forward(self, input):
input = self.resize(input) # set size (assumes square images)
input_features = calc_features(input, self.style_layers)
l = 0
# Run through all features and take l1 loss (mean error) between them
return sum(self.ot_loss(x, y) for x, y in zip(input_features, self.target_features)) * self.scale_factor
class VincentStyleLossToTarget(nn.Module):
def __init__(self, target, size=128, style_layers = [1, 6, 11, 18, 25], scale_factor=1e-5):
super(VincentStyleLossToTarget, self).__init__()
self.resize = transforms.Compose([transforms.Resize(size), transforms.CenterCrop(size)])
self.target = self.resize(target) # resize target image to size
self.style_layers = style_layers
self.scale_factor = scale_factor # Defaults tend to be very large, we scale to make them easier to work with
with torch.no_grad():
self.target_features = calc_features(self.target, self.style_layers)
def calc_2_moments(self, x):
c, w, h = x.shape
x = x.reshape(1, c, w*h) # b, c, n
mu = x.mean(dim=-1, keepdim=True) # b, c, 1
cov = torch.matmul(x-mu, torch.transpose(x-mu, -1, -2))
return mu, cov
def matrix_diag(self, diagonal):
N = diagonal.shape[-1]
shape = diagonal.shape[:-1] + (N, N)
device, dtype = diagonal.device, diagonal.dtype
result = torch.zeros(shape, dtype=dtype, device=device)
indices = torch.arange(result.numel(), device=device).reshape(shape)
indices = indices.diagonal(dim1=-2, dim2=-1)
result.view(-1)[indices] = diagonal
return result
def l2wass_dist(self, mean_stl, cov_stl, mean_synth, cov_synth):
# Calculate tr_cov and root_cov from mean_stl and cov_stl
eigvals,eigvects = torch.linalg.eigh(cov_stl) # eig returns complex tensors, I think eigh matches tf self_adjoint_eig
eigroot_mat = self.matrix_diag(torch.sqrt(eigvals.clip(0)))
root_cov_stl = torch.matmul(torch.matmul(eigvects, eigroot_mat),torch.transpose(eigvects, -1, -2))
tr_cov_stl = torch.sum(eigvals.clip(0), dim=1, keepdim=True)
tr_cov_synth = torch.sum(torch.linalg.eigvalsh(cov_synth).clip(0), dim=1, keepdim=True)
mean_diff_squared = torch.mean((mean_synth - mean_stl)**2)
cov_prod = torch.matmul(torch.matmul(root_cov_stl,cov_synth),root_cov_stl)
var_overlap = torch.sum(torch.sqrt(torch.linalg.eigvalsh(cov_prod).clip(0.1)), dim=1, keepdim=True) # .clip(0) meant errors getting eigvals
dist = mean_diff_squared+tr_cov_stl+tr_cov_synth-2*var_overlap
return dist
def forward(self, input):
input = self.resize(input) # set size (assumes square images, center crops otherwise)
input_features = calc_features(input, self.style_layers) # get features
l = 0
for x, y in zip(input_features, self.target_features):
mean_synth, cov_synth = self.calc_2_moments(x) # input mean and cov
mean_stl, cov_stl = self.calc_2_moments(y) # target mean and cov
l += self.l2wass_dist(mean_stl, cov_stl, mean_synth, cov_synth)
return l.mean() * self.scale_factor
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img.resize((w, h)), box=(i%cols*w, i//cols*h))
grid = ImageOps.expand(grid, border=20, fill=(255,255,255))
draw = ImageDraw.Draw(grid)
# # fnt = ImageFont.truetype("Pillow/Tests/fonts/FreeMono.ttf", )
# draw.text((0,0),"Sample Text",(0,0,0))
return grid
def style_image(content_image, style_image, style_losses):
data = []
content_image = content_image.resize((384, 384))
style_image = style_image.resize((384, 384))
output = [content_image]
content_image = torch.tensor(np.array(content_image).astype(np.float32) / 255.).permute(2, 0, 1)
style_image = torch.tensor(np.array(style_image).astype(np.float32) / 255.).permute(2, 0, 1)
content_loss = ContentLossToTarget(content_image.to(device))
sim = style_image.to(device)
for style_loss in style_losses:
style_loss = map_style_losses[style_loss](sim, size=384)
model = TensorModel(content_image)
def combined_loss(x): return style_loss(x) + content_loss(x)
learn = Learner(model, get_dummy_dls(150), combined_loss, lr=1e-2, cbs=[ImageOptCB(), DeviceCB()], opt_func=torch.optim.Adam)
learn.fit(1)
im = to_cpu(learn.preds.clip(0, 1))
output.append(Image.fromarray((im.permute(1, 2, 0).numpy()* 255).astype(np.uint8)))
return image_grid(output, 1, len(style_losses) + 1)
def run():
with gr.Blocks() as demo:
# gr.Markdown("Start typing below and then click **Run** to see the output.")
with gr.Row():
with gr.Column(scale=1):
content_im = gr.Image(shape=(318, 318), type='pil', label="Content image")
style_img = gr.Image(shape=(318, 318), type='pil', label="Style image")
style_losses = gr.CheckboxGroup(["Gram Matrix", "OT-Based", "Vincent's"], value=["Gram Matrix", "OT-Based", "Vincent's"], label="Style Loss")
btn = gr.Button("Generate")
with gr.Column(scale=1):
out = gr.Image(shape=(384, 384))
btn.click(fn=style_image, inputs=[content_im, style_img, style_losses], outputs=out)
demo.launch(server_name="0.0.0.0", server_port=7860)
map_style_losses = {
"Gram Matrix": StyleLossToTarget,
"OT-Based": OTStyleLossToTarget,
"Vincent's": VincentStyleLossToTarget
}
if __name__ == "__main__":
device = 'cuda' if torch.cuda.is_available() else 'cpu'
vgg16 = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1).to(device)
vgg16.eval()
vgg16 = vgg16.features
run() |