import ultralytics import onemetric import supervision import typing import tqdm import os from ultralytics import YOLO from dataclasses import dataclass from onemetric.cv.utils.iou import box_iou_batch from supervision import Point from supervision import Detections, BoxAnnotator from supervision import draw_text from supervision import Color from supervision import VideoInfo from supervision import get_video_frames_generator from supervision import VideoSink import torch from typing import List import numpy as np import gradio as gr from tqdm import tqdm import git git.Git("./").clone("git@github.com:Megvii-BaseDetection/YOLOX.git") os.chdir("./YOLOX") os.system("pip3 install -v -e .") os.chdir("./..") import yolox from yolox.tracker.byte_tracker import BYTETracker, STrack MODEL = "./best.pt" SOURCE_VIDEO_PATH = "./examples" TARGET_VIDEO_PATH = "test.mp4" CLASS_ID = [0,1,2,3] model = YOLO(MODEL) model.fuse() classes = CLASS_ID @dataclass(frozen=True) class BYTETrackerArgs: track_thresh: float = 0.25 track_buffer: int = 30 match_thresh: float = 0.8 aspect_ratio_thresh: float = 3.0 min_box_area: float = 1.0 mot20: bool = False # converts Detections into format that can be consumed by match_detections_with_tracks function def detections2boxes(detections : Detections) -> np.ndarray: return np.hstack(( detections.xyxy, detections.confidence[:, np.newaxis] )) # converts List[STrack] into format that can be consumed by match_detections_with_tracks function def tracks2boxes(tracks: List[STrack]) -> np.ndarray: return np.array([ track.tlbr for track in tracks ], dtype=float) # matches our bounding boxes with predictions def match_detections_with_tracks( detections: Detections, tracks: List[STrack], ) -> Detections: if not np.any(detections.xyxy) or len(tracks) == 0: return np.empty((0,)) tracks_boxes = tracks2boxes(tracks=tracks) iou = box_iou_batch(tracks_boxes, detections.xyxy) track2detection = np.argmax(iou, axis=1) tracker_ids = [None] * len(detections) for tracker_index, detection_index in enumerate(track2detection): if iou[tracker_index, detection_index] != 0: tracker_ids[detection_index] = tracks[tracker_index].track_id return tracker_ids def ObjectDetection(video_path): byte_tracker = BYTETracker(BYTETrackerArgs()) video_info = VideoInfo.from_video_path(video_path) generator = get_video_frames_generator(video_path) box_annotator = BoxAnnotator(thickness=5, text_thickness=5, text_scale=1) with VideoSink(TARGET_VIDEO_PATH, video_info) as sink: # loop over video frames for frame in tqdm(generator, total=video_info.total_frames): results = model(frame) detections = Detections( xyxy=results[0].boxes.xyxy.cpu().numpy(), confidence=results[0].boxes.conf.cpu().numpy(), class_id=results[0].boxes.cls.cpu().numpy().astype(int) ) # filtering out detections with unwanted classes detections = detections[np.isin(detections.class_id, [0,1,2,3])] # tracking detections tracks = byte_tracker.update( output_results=detections2boxes(detections = detections), img_info=frame.shape, img_size=frame.shape ) tracker_id = match_detections_with_tracks(detections=detections, tracks=tracks) detections.tracker_id = np.array(tracker_id) # filtering out detections without trackers detections = detections[np.not_equal(detections.tracker_id, None)] # format custom labels labels = [ f"#{tracker_id} {classes[class_id]} {confidence:0.2f}" for _, _, confidence, class_id, tracker_id in detections ] t = np.unique(detections.class_id, return_counts =True) for x in zip(t[0], t[1]): frame = draw_text(background_color=Color.white(), scene=frame, text=' '.join((str(classes[x[0]]), ':', str(x[1]))), text_anchor=Point(x=50, y=300 + (50 * x[0])), text_scale = 2, text_thickness = 4, ) # annotate and display frame frame = box_annotator.annotate(scene=frame, detections=detections, labels=labels) sink.write_frame(frame) return TARGET_VIDEO_PATH demo = gr.Interface(fn=ObjectDetection, inputs=gr.Video(), outputs=gr.Video(), examples=SOURCE_VIDEO_PATH, cache_examples=False) demo.launch()