Spaces:
Runtime error
Runtime error
File size: 16,290 Bytes
8579953 128d4d6 8579953 128d4d6 8579953 128d4d6 8579953 128d4d6 8579953 128d4d6 8579953 128d4d6 8579953 128d4d6 8579953 128d4d6 8579953 128d4d6 8579953 128d4d6 8579953 128d4d6 8579953 128d4d6 8579953 128d4d6 8579953 128d4d6 8579953 5933369 8579953 5933369 8579953 ecbf7df 8579953 0b903bc 8579953 0b903bc 8579953 0b903bc 8579953 0b903bc 8579953 0b903bc 8579953 ecbf7df 8579953 2ae33c2 8579953 6537399 2ae33c2 8579953 2ae33c2 8579953 ecbf7df 8579953 ecbf7df 8579953 ecbf7df 8579953 4dc33e7 8579953 ecbf7df 8579953 ecbf7df 8579953 ecbf7df 8579953 0b903bc 8579953 cd75651 8579953 0b903bc 8579953 5e270ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
# import whisper
from faster_whisper import WhisperModel
import datetime
import subprocess
import gradio as gr
from pathlib import Path
import pandas as pd
import re
import time
import os
import numpy as np
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_score
from pytube import YouTube
import yt_dlp
import torch
import pyannote.audio
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
from pyannote.audio import Audio
from pyannote.core import Segment
from gpuinfo import GPUInfo
import wave
import contextlib
from transformers import pipeline
import psutil
whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"]
source_languages = {
"en": "Inglês",
"zh": "Chinês",
"de": "Alemão",
"es": "Espanhol",
"ru": "Russo",
"ko": "Coreano",
"fr": "Francês",
"ja": "Japonês",
"pt": "Português",
"tr": "Turco",
"pl": "Polaco",
"ca": "Catalão",
"nl": "Holandês",
"ar": "Árabe",
"sv": "Sueco",
"it": "Italiano",
"id": "Indonésio",
"hi": "Hindi",
"fi": "Finlandês",
"vi": "Vietnamita",
"he": "Hebraico",
"uk": "Ucraniano",
"el": "Grego",
"ms": "Malaio",
"cs": "Checo",
"ro": "Romeno",
"da": "Dinamarquês",
"hu": "Húngaro",
"ta": "Tâmil",
"no": "Norueguês",
"th": "Tailandês",
"ur": "Urdu",
"hr": "Croata",
"bg": "Búlgaro",
"lt": "Lituano",
"la": "Latim",
"mi": "Maori",
"ml": "Malaiala",
"cy": "Galês",
"sk": "Eslovaco",
"te": "Telugu",
"fa": "Persa",
"lv": "Letão",
"bn": "Bengali",
"sr": "Sérvio",
"az": "Azerbaijano",
"sl": "Esloveno",
"kn": "Canarim",
"et": "Estoniano",
"mk": "Macedónio",
"br": "Bretão",
"eu": "Basco",
"is": "Islandês",
"hy": "Arménio",
"ne": "Nepalês",
"mn": "Mongol",
"bs": "Bósnio",
"kk": "Cazaque",
"sq": "Albanês",
"sw": "Suaíli",
"gl": "Galego",
"mr": "Marata",
"pa": "Punjabi",
"si": "Cingalês",
"km": "Khmer",
"sn": "Shona",
"yo": "Ioruba",
"so": "Somali",
"af": "Africâner",
"oc": "Occitano",
"ka": "Georgiano",
"be": "Bielorrusso",
"tg": "Tajique",
"sd": "Sindi",
"gu": "Guzerate",
"am": "Amárico",
"yi": "Iídiche",
"lo": "Laosiano",
"uz": "Usbeque",
"fo": "Feroês",
"ht": "Crioulo Haitiano",
"ps": "Pashto",
"tk": "Turcomano",
"nn":"Nynorsk",
"mt": "Maltês",
"sa": "Sânscrito",
"lb": "Luxemburguês",
"my": "Birmanês",
"bo": "Tibetano",
"tl": "Tagalog",
"mg": "Malgaxe",
"as": "Assamês",
"tt": "Tártaro",
"haw": "Havaiano",
"ln": "Lingala",
"ha": "Hausa",
"ba": "Bashkir",
"jw": "Javanês",
"su": "Sundanês",
}
source_language_list = [key[0] for key in source_languages.items()]
MODEL_NAME = "vumichien/whisper-medium-jp"
lang = "pt"
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
os.makedirs('output', exist_ok=True)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
embedding_model = PretrainedSpeakerEmbedding(
"speechbrain/spkrec-ecapa-voxceleb",
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
def transcribe(microphone, file_upload):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"AVISO: Você enviou um arquivo de áudio e usou o microfone. "
"O arquivo gravado pelo microfone será usado e o áudio enviado será descartado.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERRO: Você precisa usar o microfone ou fazer upload de um arquivo de áudio"
file = microphone if microphone is not None else file_upload
text = pipe(file)["text"]
return warn_output + text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url):
# yt = YouTube(yt_url)
# html_embed_str = _return_yt_html_embed(yt_url)
# stream = yt.streams.filter(only_audio=True)[0]
# stream.download(filename="audio.mp3")
ydl_opts = {
'format': 'bestvideo*+bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl':'audio.%(ext)s',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([yt_url])
text = pipe("audio.mp3")["text"]
return html_embed_str, text
def convert_time(secs):
return datetime.timedelta(seconds=round(secs))
def get_youtube(video_url):
# yt = YouTube(video_url)
# abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
ydl_opts = {
'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(video_url, download=False)
abs_video_path = ydl.prepare_filename(info)
ydl.process_info(info)
print("Sucesso ao baixar o vídeo")
print(abs_video_path)
return abs_video_path
def speech_to_text(video_file_path, selected_source_lang, whisper_model, num_speakers):
"""
# Transcreva o link do youtube usando OpenAI Whisper
NOTA: Este modelo foi adaptado por Pedro Faria, para exemplo para a Biometrid, não deve ser usado para outros fins.
1. Usando o modelo Whisper da Open AI para separar áudio em segmentos e gerar transcrições.
2. Gerando embeddings de alto-falante para cada segmento.
3. Aplicando clustering aglomerativo nos embeddings para identificar o falante de cada segmento.
O reconhecimento de fala é baseado em modelos do OpenAI Whisper https://github.com/openai/whisper
Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
Modelo de diarização de alto-falante e pipeline desenvolvido por https://github.com/pyannote/pyannote-audio
"""
# model = whisper.load_model(whisper_model)
# model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16")
model = WhisperModel(whisper_model, compute_type="int8")
time_start = time.time()
if(video_file_path == None):
raise ValueError("Error no video input")
print(video_file_path)
try:
# Read and convert youtube video
_,file_ending = os.path.splitext(f'{video_file_path}')
print(f'file enging is {file_ending}')
audio_file = video_file_path.replace(file_ending, ".wav")
print("A iniciar a conversão para WAV")
os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
# Get duration
with contextlib.closing(wave.open(audio_file,'r')) as f:
frames = f.getnframes()
rate = f.getframerate()
duration = frames / float(rate)
print(f"Conversão para WAV concluída, duração do arquivo de áudio.: {duration}")
# Transcribe audio
options = dict(language=selected_source_lang, beam_size=5, best_of=5)
transcribe_options = dict(task="transcribe", **options)
segments_raw, info = model.transcribe(audio_file, **transcribe_options)
# Convert back to original openai format
segments = []
i = 0
for segment_chunk in segments_raw:
chunk = {}
chunk["start"] = segment_chunk.start
chunk["end"] = segment_chunk.end
chunk["text"] = segment_chunk.text
segments.append(chunk)
i += 1
print("transcrição de audio com fast whisper terminada")
except Exception as e:
raise RuntimeError("Erro a converter o filme para audio")
try:
# Create embedding
def segment_embedding(segment):
audio = Audio()
start = segment["start"]
# Whisper overshoots the end timestamp in the last segment
end = min(duration, segment["end"])
clip = Segment(start, end)
waveform, sample_rate = audio.crop(audio_file, clip)
return embedding_model(waveform[None])
embeddings = np.zeros(shape=(len(segments), 192))
for i, segment in enumerate(segments):
embeddings[i] = segment_embedding(segment)
embeddings = np.nan_to_num(embeddings)
print(f'Embedding shape: {embeddings.shape}')
if num_speakers == 0:
# Find the best number of speakers
score_num_speakers = {}
for num_speakers in range(2, 10+1):
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
score_num_speakers[num_speakers] = score
best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x])
print(f"O número estimado de participantes: {best_num_speaker} com pontuação de {score_num_speakers[best_num_speaker]} ")
else:
best_num_speaker = num_speakers
# Assign speaker label
clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
labels = clustering.labels_
for i in range(len(segments)):
segments[i]["speaker"] = 'Participante ' + str(labels[i] + 1)
# Make output
objects = {
'Start' : [],
'End': [],
'Speaker': [],
'Text': []
}
text = ''
for (i, segment) in enumerate(segments):
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
objects['Start'].append(str(convert_time(segment["start"])))
objects['Speaker'].append(segment["speaker"])
if i != 0:
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
objects['Text'].append(text)
text = ''
text += segment["text"] + ' '
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
objects['Text'].append(text)
time_end = time.time()
time_diff = time_end - time_start
memory = psutil.virtual_memory()
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
system_info = f"""
*Memoria: {memory.total / (1024 * 1024 * 1024):.2f}GB, utilizado: {memory.percent}%, disponivel: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
*Tempo de processamento: {time_diff:.5} segundos.*
*Utilização de GPU: {gpu_utilization}%, Memoria de GPU: {gpu_memory}MiB.*
"""
save_path = "output/transcript_result.csv"
df_results = pd.DataFrame(objects)
df_results.to_csv(save_path, index=False, encoding="utf-8")
return df_results, system_info, save_path
except Exception as e:
raise RuntimeError("Erro a correr a inferência com um modelo local", e)
# ---- Gradio Layout -----
# Inspiration from https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles
video_in = gr.Video(label="Ficheiro Video", mirror_webcam=False)
youtube_url_in = gr.Textbox(label="Url Youtube", lines=1, interactive=True)
df_init = pd.DataFrame(columns=['Início', 'Fim', 'Participante', 'Texto'])
memory = psutil.virtual_memory()
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="pt", label="Linguagem detectada no vídeo", interactive=True)
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="large-v2", label="Modelo Whisper selecionado", interactive=True)
number_speakers = gr.Number(precision=0, value=2, label="Insira o número de participantes para obter melhores resultados. Se o valor for 0, o modelo encontrará automaticamente a melhor quantidade.", interactive=True)
system_info = gr.Markdown(f"*Memoria: {memory.total / (1024 * 1024 * 1024):.2f}GB, utilizado: {memory.percent}%, disponível: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
download_transcript = gr.File(label="Download transcript")
transcription_df = gr.DataFrame(value=df_init,label="Dataframe da transcrição", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
title = "Whisper speaker diarization"
demo = gr.Blocks(title=title)
demo.encrypt = False
with demo:
with gr.Tab("Whisper speaker diarization"):
gr.Markdown('''
<div>
<h1 style='text-align: center'>Whisper diarização com participantes</h1>
Este espaço usa os modelos whisper <a href='https://github.com/openai/whisper' target='_blank'><b>OpenAI</b></a> with <a href='https://github.com/guillaumekln/faster-whisper' target='_blank'><b>CTranslate2</b></a> which is a fast inference engine for Transformer models to recognize the speech (4 times faster than original openai model with same accuracy)
e o modelo ECAPA-TDNN de <a href='https://github.com/speechbrain/speechbrain' target='_blank'><b>SpeechBrain</b></a> para codificar e identificar participantes
</div>
''')
with gr.Row():
gr.Markdown('''
### Transcreva o link do youtube usando OpenAI Whisper
##### 1. Usando o modelo Whisper da Open AI para separar o áudio em segmentos e gerar transcrições.
##### 2. Gerando embeddings para cada segmento.
##### 3. Aplicando clustering aglomerativo nos embeddings para identificar o participante de cada segmento.
''')
with gr.Row():
gr.Markdown('''
### Pode testar com os seguintes exemplos:
''')
examples = gr.Examples(examples=
[ "https://youtu.be/mYT33lWKJyw",
"https://youtu.be/ctirgguI7RM"],
label="Examples", inputs=[youtube_url_in])
with gr.Row():
with gr.Column():
youtube_url_in.render()
download_youtube_btn = gr.Button("Descarregar video do Youtube")
download_youtube_btn.click(get_youtube, [youtube_url_in], [
video_in])
print(video_in)
with gr.Row():
with gr.Column():
video_in.render()
with gr.Column():
gr.Markdown('''
##### Aqui você pode iniciar o processo de transcrição.
##### Por favor, selecione o idioma de origem para a transcrição.
##### Você pode selecionar uma faixa de números estimados de participantes.
''')
selected_source_lang.render()
selected_whisper_model.render()
number_speakers.render()
transcribe_btn = gr.Button("Transcrever audio com diarização")
transcribe_btn.click(speech_to_text,
[video_in, selected_source_lang, selected_whisper_model, number_speakers],
[transcription_df, system_info, download_transcript]
)
with gr.Row():
gr.Markdown('''
##### Aqui vai obter a transcrição
##### ''')
with gr.Row():
with gr.Column():
download_transcript.render()
transcription_df.render()
system_info.render()
demo.launch(debug=True) |