Upload 3 files
Browse files- graph.py +190 -0
- system_prompts.py +49 -0
- tools.py +350 -0
graph.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from system_prompts import SYSTEM_PROMPT_ATTACH_FILENAME, SYSTEM_PROMPT_AGGREGATOR, SYSTEM_PROMPT_ORQ
|
2 |
+
|
3 |
+
from pydantic import BaseModel, Field
|
4 |
+
from pydantic import ValidationError
|
5 |
+
|
6 |
+
from langgraph.types import Command
|
7 |
+
from langgraph.graph import StateGraph, MessagesState, START, END
|
8 |
+
from langchain_core.messages import ToolMessage, AIMessage, HumanMessage
|
9 |
+
from langchain_google_vertexai import ChatVertexAI
|
10 |
+
from langchain_anthropic import ChatAnthropic
|
11 |
+
from langgraph.prebuilt import ToolNode
|
12 |
+
|
13 |
+
from typing import Literal, Optional
|
14 |
+
import time
|
15 |
+
|
16 |
+
from tools import download_youtube_video, get_tools
|
17 |
+
|
18 |
+
llm_pro = ChatVertexAI(model="gemini-2.5-pro")
|
19 |
+
llm_claude = ChatAnthropic(model='claude-3-5-sonnet-latest', max_retries=6)
|
20 |
+
llm_tools = llm_claude.bind_tools(get_tools())
|
21 |
+
|
22 |
+
class TaskState(MessagesState): # inherits the standard “messages” list
|
23 |
+
check_final_answer: bool | None
|
24 |
+
path_filename: str | None
|
25 |
+
gcp_path: str | None
|
26 |
+
final_answer: str | None
|
27 |
+
explanation: str | None
|
28 |
+
|
29 |
+
class RouterFilename(BaseModel):
|
30 |
+
is_filename_attached: bool = Field(..., description="Whether or not there is a file or link associated with data to be analysed at the user's request.")
|
31 |
+
data_type: Literal["code", "data", "youtube", "audio", "image", "none"] = Field(..., description="Type of file attached to the task")
|
32 |
+
youtube_url: Optional[str] = Field(
|
33 |
+
default=None,
|
34 |
+
description="Youtube URL attached to the user's order, if any."
|
35 |
+
)
|
36 |
+
|
37 |
+
class Answer(BaseModel):
|
38 |
+
final_answer: Optional[str] = Field(
|
39 |
+
default=None,
|
40 |
+
description="Final response for the user"
|
41 |
+
)
|
42 |
+
|
43 |
+
explanation: Optional[str] = Field(
|
44 |
+
default=None,
|
45 |
+
description="Explanation of the final response"
|
46 |
+
)
|
47 |
+
|
48 |
+
def attach_data(state: TaskState) -> dict:
|
49 |
+
messages = [
|
50 |
+
{"role": "system",
|
51 |
+
"content": SYSTEM_PROMPT_ATTACH_FILENAME}
|
52 |
+
] + state["messages"]
|
53 |
+
|
54 |
+
generator = llm_pro.with_structured_output(RouterFilename)
|
55 |
+
|
56 |
+
for _ in range(3): # 3 reintentos lógicos
|
57 |
+
try:
|
58 |
+
router_decision = generator.invoke(messages)
|
59 |
+
if router_decision is not None:
|
60 |
+
break
|
61 |
+
except ValidationError as err:
|
62 |
+
messages.append({"role": "system", "content":
|
63 |
+
"This JSON is not valid! Please, try again."})
|
64 |
+
time.sleep(2.0)
|
65 |
+
else:
|
66 |
+
raise RuntimeError("Gemini didn't get the structured output.")
|
67 |
+
|
68 |
+
print(f"Router filename decision: {router_decision}")
|
69 |
+
if router_decision.is_filename_attached:
|
70 |
+
filename_type = router_decision.data_type
|
71 |
+
if filename_type in ("code", "data"):
|
72 |
+
path_filename = state["path_filename"]
|
73 |
+
if filename_type == 'code':
|
74 |
+
with open(state["path_filename"], "r", encoding="utf-8") as f:
|
75 |
+
code = f.read()
|
76 |
+
|
77 |
+
response = f"Code:\n```python\n{code}\n```"
|
78 |
+
else:
|
79 |
+
response = f"Path of the attached file: {path_filename}"
|
80 |
+
|
81 |
+
elif filename_type == 'youtube':
|
82 |
+
_, gcp_path = download_youtube_video(router_decision.youtube_url, "video")
|
83 |
+
response = f"video GCP uri: {gcp_path}"
|
84 |
+
|
85 |
+
elif filename_type == 'audio':
|
86 |
+
gcp_path = state["gcp_path"]
|
87 |
+
response = f"audio GCP uri: {gcp_path}"
|
88 |
+
|
89 |
+
else:
|
90 |
+
gcp_path = state["gcp_path"]
|
91 |
+
response = f"image GCP uri: {gcp_path}"
|
92 |
+
|
93 |
+
|
94 |
+
#pdb.set_trace()
|
95 |
+
return {"messages": state["messages"] + [response]}
|
96 |
+
|
97 |
+
return {}
|
98 |
+
|
99 |
+
def manager(state: TaskState) -> dict:
|
100 |
+
messages = [
|
101 |
+
{"role": "system",
|
102 |
+
"content": SYSTEM_PROMPT_ORQ}
|
103 |
+
] + state["messages"]
|
104 |
+
|
105 |
+
response = llm_tools.invoke(messages)
|
106 |
+
print(f"LLM ORQ response: {response}")
|
107 |
+
|
108 |
+
#suponemos que esto tiene que ser la respuesta final
|
109 |
+
if not response.tool_calls and "FINAL_ANSER" in response.content:
|
110 |
+
return {"messages": state["messages"] + [response], "check_final_anser": True}
|
111 |
+
|
112 |
+
return {"messages": state["messages"] + [response]}
|
113 |
+
|
114 |
+
def next_node_router(state: TaskState) -> Literal[
|
115 |
+
"tool_node", "aggregator"
|
116 |
+
]:
|
117 |
+
if state["check_final_answer"]:
|
118 |
+
return "aggregator"
|
119 |
+
|
120 |
+
# Inspeccionamos el último mensaje del historial
|
121 |
+
last_message = state["messages"][-1]
|
122 |
+
if isinstance(last_message, AIMessage) and last_message.tool_calls:
|
123 |
+
return "tool_node"
|
124 |
+
|
125 |
+
return "aggregator"
|
126 |
+
|
127 |
+
def aggregator(state: TaskState) -> dict:
|
128 |
+
task = state["messages"][0].content
|
129 |
+
last_model_answer = state["messages"][-1].content
|
130 |
+
|
131 |
+
content = f"""
|
132 |
+
Task: {task}
|
133 |
+
{last_model_answer}
|
134 |
+
"""
|
135 |
+
message_last = HumanMessage(content=content)
|
136 |
+
|
137 |
+
messages = [
|
138 |
+
{"role": "system",
|
139 |
+
"content": SYSTEM_PROMPT_AGGREGATOR}
|
140 |
+
] + [message_last]
|
141 |
+
|
142 |
+
generator = llm_pro.with_structured_output(Answer)
|
143 |
+
|
144 |
+
for _ in range(3): # 3 reintentos lógicos
|
145 |
+
try:
|
146 |
+
response = generator.invoke(messages)
|
147 |
+
if response is not None: # lista no vacía
|
148 |
+
break
|
149 |
+
except ValidationError as err:
|
150 |
+
messages.append({"role": "system", "content":
|
151 |
+
"This JSON is not valid! Please, try again."})
|
152 |
+
time.sleep(2.0)
|
153 |
+
else:
|
154 |
+
raise RuntimeError("Gemini didn't get the structured output.")
|
155 |
+
|
156 |
+
return {"final_answer": response.final_answer, "explanation": response.explanation}
|
157 |
+
|
158 |
+
|
159 |
+
def generate_graph():
|
160 |
+
tool_node = ToolNode(get_tools())
|
161 |
+
|
162 |
+
builder = StateGraph(TaskState)
|
163 |
+
|
164 |
+
# Añadimos todos los nodos, incluyendo el nuevo tool_node
|
165 |
+
builder.add_node("attach_data", attach_data)
|
166 |
+
builder.add_node("manager", manager)
|
167 |
+
builder.add_node("tool_node", tool_node) # NUEVO
|
168 |
+
builder.add_node("aggregator", aggregator)
|
169 |
+
|
170 |
+
# El manager es el punto de partida
|
171 |
+
builder.add_edge(START, "attach_data")
|
172 |
+
builder.add_edge("attach_data", "manager")
|
173 |
+
|
174 |
+
# Después de ejecutar una herramienta, vuelve al manager con el resultado
|
175 |
+
builder.add_edge("tool_node", "manager")
|
176 |
+
|
177 |
+
# El manager ahora usa un enrutador condicional para decidir el siguiente gran paso
|
178 |
+
builder.add_conditional_edges(
|
179 |
+
"manager",
|
180 |
+
next_node_router,
|
181 |
+
# El mapeo ahora es más simple gracias a la lógica en next_node_router
|
182 |
+
{
|
183 |
+
"tool_node": "tool_node",
|
184 |
+
"aggregator": "aggregator"
|
185 |
+
}
|
186 |
+
)
|
187 |
+
|
188 |
+
graph = builder.compile()
|
189 |
+
|
190 |
+
return graph
|
system_prompts.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SYSTEM_PROMPT_ATTACH_FILENAME = """
|
2 |
+
You are an expert problem-solving agent of all kinds.
|
3 |
+
You are going to receive a task from a user and you have to decide whether he has asked you to analyse the attached data.
|
4 |
+
The data can be a file name to download or a link to a web page to download the data.
|
5 |
+
|
6 |
+
RESPONSE FORMAT
|
7 |
+
|
8 |
+
Return a JSON format.
|
9 |
+
If no data is attached, the field data_type=“none”. If data_type is not “none”, the field “is_filename_attached”=True.
|
10 |
+
"""
|
11 |
+
|
12 |
+
SYSTEM_PROMPT_VIDEO = """
|
13 |
+
You are an expert analyser of videos that you will be asked specific questions about.
|
14 |
+
You have to always answer the questions with an answer as we have to solve a quiz and ambiguous answers are not accepted.
|
15 |
+
"""
|
16 |
+
|
17 |
+
SYSTEM_PROMPT_AUDIO = """
|
18 |
+
You are an expert analyser of audios that you will be asked specific questions about.
|
19 |
+
You have to always answer the questions with an answer as we have to solve a quiz and ambiguous answers are not accepted.
|
20 |
+
"""
|
21 |
+
|
22 |
+
SYSTEM_PROMPT_IMAGE = """
|
23 |
+
You are an expert analyser of images that you will be asked specific questions about.
|
24 |
+
You have to always answer the questions with an answer as we have to solve a quiz and ambiguous answers are not accepted.
|
25 |
+
"""
|
26 |
+
|
27 |
+
SYSTEM_PROMPT_ORQ = """
|
28 |
+
Decide step by step how to solve the user's question using the following tools if necessary:
|
29 |
+
|
30 |
+
• PythonREPL – Run Python code.
|
31 |
+
• web_search – Search the web using google search.
|
32 |
+
• visit_webpage – Visits a webpage at the given url and reads its content as a markdown string.
|
33 |
+
• wikipedia_search – Query Wikipedia.
|
34 |
+
• query_video – Analyse the video and answer your query.
|
35 |
+
• query_audio – Analyse the audio and answer your query.
|
36 |
+
• query_image – Analyse the image and answer your query.
|
37 |
+
|
38 |
+
If you are trying to analyse a very complicated picture such as the solution to a board game, it is best to try to transfer that position into code using an engine to confirm your thoughts by making those moves that you think are winning.
|
39 |
+
|
40 |
+
When you have reached the final answer, respond with:
|
41 |
+
FINAL ANSWER: {final answer}
|
42 |
+
EXPLANATION: {explanation}
|
43 |
+
"""
|
44 |
+
|
45 |
+
SYSTEM_PROMPT_AGGREGATOR = """
|
46 |
+
You are an assistant who takes the final answer to a user's question and has to extract:
|
47 |
+
- Final answer: should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
48 |
+
- Explanation: that is understandable and coherent.
|
49 |
+
"""
|
tools.py
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
|
4 |
+
import mimetypes
|
5 |
+
from google.cloud import storage
|
6 |
+
from typing import Literal
|
7 |
+
import requests
|
8 |
+
import re
|
9 |
+
from markdownify import markdownify
|
10 |
+
from requests.exceptions import RequestException
|
11 |
+
from langchain_core.tools import convert_runnable_to_tool
|
12 |
+
from smolagents.utils import truncate_content
|
13 |
+
from langchain_core.runnables import RunnableLambda
|
14 |
+
|
15 |
+
from pytubefix import YouTube
|
16 |
+
from pytubefix.cli import on_progress
|
17 |
+
|
18 |
+
from langchain_core.tools import tool
|
19 |
+
from langchain_core.prompts import ChatPromptTemplate
|
20 |
+
from langchain_core.output_parsers import StrOutputParser
|
21 |
+
from langchain_google_vertexai import ChatVertexAI
|
22 |
+
from langchain.agents import Tool
|
23 |
+
from langchain_experimental.tools import PythonREPLTool
|
24 |
+
from langchain_community.tools import WikipediaQueryRun
|
25 |
+
from langchain_community.utilities import WikipediaAPIWrapper
|
26 |
+
from langchain_community.utilities import GoogleSerperAPIWrapper
|
27 |
+
|
28 |
+
from system_prompts import SYSTEM_PROMPT_VIDEO, SYSTEM_PROMPT_AUDIO, SYSTEM_PROMPT_IMAGE
|
29 |
+
|
30 |
+
llm_flash = ChatVertexAI(model="gemini-2.5-flash")
|
31 |
+
|
32 |
+
# Extensiones que queremos “normalizar” (por si el sistema no las trae de serie)
|
33 |
+
_EXTRA_MIME = {
|
34 |
+
".mp3": "audio/mpeg", # RFC oficial :contentReference[oaicite:2]{index=2}
|
35 |
+
".mp4": "video/mp4", # MIME estándar :contentReference[oaicite:3]{index=3}
|
36 |
+
}
|
37 |
+
mimetypes.add_type("audio/mpeg", ".mp3")
|
38 |
+
mimetypes.add_type("video/mp4", ".mp4")
|
39 |
+
|
40 |
+
def upload_file_to_bucket(
|
41 |
+
local_path: str,
|
42 |
+
bucket_name: str = os.getenv("GCP_BUCKET_NAME"),
|
43 |
+
) -> str:
|
44 |
+
"""
|
45 |
+
Sube cualquier fichero a Cloud Storage y devuelve su URI gs://.
|
46 |
+
• Detecta automáticamente el MIME según la extensión.
|
47 |
+
• Admite sobrescribir `object_name` para cambiar la ruta en el bucket.
|
48 |
+
• Aplica precondición `if_generation_match=0` (subida segura: falla si ya existe).
|
49 |
+
"""
|
50 |
+
if not os.path.isfile(local_path):
|
51 |
+
raise FileNotFoundError(f"No existe: {local_path}")
|
52 |
+
|
53 |
+
# ---------- (1) Resolver nombre y extensión ----------
|
54 |
+
_, ext = os.path.splitext(local_path) # :contentReference[oaicite:4]{index=4}
|
55 |
+
ext = ext.lower()
|
56 |
+
object_name = f"data{ext}"
|
57 |
+
|
58 |
+
# ---------- (2) Resolver MIME ----------
|
59 |
+
file_type, _ = mimetypes.guess_type(local_path) # intenta inferir MIME
|
60 |
+
if not file_type and ext in _EXTRA_MIME: # fallback manual
|
61 |
+
file_type = _EXTRA_MIME[ext]
|
62 |
+
if not file_type:
|
63 |
+
raise ValueError(f"No se pudo inferir MIME para «{ext}»")
|
64 |
+
|
65 |
+
# ---------- (3) Subir a GCS ----------
|
66 |
+
client = storage.Client()
|
67 |
+
bucket = client.bucket(bucket_name)
|
68 |
+
blob = bucket.blob(object_name)
|
69 |
+
|
70 |
+
blob.upload_from_filename(
|
71 |
+
local_path,
|
72 |
+
content_type=file_type,
|
73 |
+
)
|
74 |
+
|
75 |
+
gs_uri = f"gs://{bucket_name}/{object_name}"
|
76 |
+
print(f"✅ Subido → {gs_uri} ({file_type})")
|
77 |
+
return gs_uri
|
78 |
+
|
79 |
+
|
80 |
+
def download_youtube_video(url: str, mode: Literal["video", "audio"]) -> str:
|
81 |
+
"""
|
82 |
+
Downloads a YouTube video or audio file based on the specified mode.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
url (str): The URL of the YouTube video to download.
|
86 |
+
mode (Literal["audio", "video"]): The download mode. Use "audio" to download the audio track as an .mp3 file,
|
87 |
+
or "video" to download the full video as an .mp4 file.
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
Tuple[str, str]:
|
91 |
+
A two-element tuple *(local_path, gcp_path)* where
|
92 |
+
|
93 |
+
* **local_path** is the absolute path of the file saved on disk.
|
94 |
+
* **gcp_path** is the `gs://bucket/object` URI (or signed HTTPS
|
95 |
+
URL) of the file uploaded to Google Cloud Storage.
|
96 |
+
|
97 |
+
Raises:
|
98 |
+
ValueError: If the mode is not "audio" or "video".
|
99 |
+
Exception: If an error occurs during the download process.
|
100 |
+
"""
|
101 |
+
if mode not in ["audio", "video"]:
|
102 |
+
raise ValueError("'Mode' argument is not valid! It should be audio or video.")
|
103 |
+
|
104 |
+
data_folder = "data/"
|
105 |
+
yt = YouTube(url, on_progress_callback=on_progress)
|
106 |
+
|
107 |
+
if mode == "video":
|
108 |
+
ys = yt.streams.get_highest_resolution()
|
109 |
+
tmp_path = ys.download(output_path=data_folder)
|
110 |
+
base, _ = os.path.splitext(tmp_path)
|
111 |
+
mp4_path = f"{base}.mp4"
|
112 |
+
|
113 |
+
mp4_files = [
|
114 |
+
f for f in os.listdir(data_folder)
|
115 |
+
if f.lower().endswith(".mp4")
|
116 |
+
]
|
117 |
+
|
118 |
+
path_filename = mp4_path
|
119 |
+
uri_path = upload_file_to_bucket(path_filename)
|
120 |
+
|
121 |
+
elif mode == "audio":
|
122 |
+
audio = yt.streams.filter(only_audio=True).first() # best available audio
|
123 |
+
tmp_path = audio.download(output_path=data_folder) # e.g. .../myvideo.m4a
|
124 |
+
base, _ = os.path.splitext(tmp_path)
|
125 |
+
mp3_path = f"{base}.mp3"
|
126 |
+
|
127 |
+
# Convert with FFmpeg
|
128 |
+
subprocess.run(
|
129 |
+
[
|
130 |
+
"ffmpeg", "-y", # overwrite if exists
|
131 |
+
"-i", tmp_path, # input
|
132 |
+
"-vn", # no video
|
133 |
+
"-ar", "44100", # sample-rate
|
134 |
+
"-ab", "192k", # audio bitrate
|
135 |
+
"-loglevel", "error", # silence ffmpeg output
|
136 |
+
mp3_path,
|
137 |
+
],
|
138 |
+
check=True,
|
139 |
+
)
|
140 |
+
|
141 |
+
os.remove(tmp_path) # keep filesystem limpio (opcional)
|
142 |
+
path_filename = os.path.abspath(mp3_path)
|
143 |
+
uri_path = upload_file_to_bucket(path_filename)
|
144 |
+
|
145 |
+
return path_filename, uri_path
|
146 |
+
|
147 |
+
@tool
|
148 |
+
def query_video(gcp_uri: str, query: str) -> str:
|
149 |
+
"""Analyzes a video file from a Google Cloud Storage (GCS) URI to answer a specific question about its visual content.
|
150 |
+
|
151 |
+
This tool is the correct choice for any task that requires understanding or describing
|
152 |
+
events, objects, or actions within a video. The video must be accessible via a GCS URI.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
gcp_uri (str): The full Google Cloud Storage URI for the video file.
|
156 |
+
It MUST be a .mp4 file and the URI MUST start with 'gs://'.
|
157 |
+
query (str): A clear, specific question about the video's content.
|
158 |
+
For example: 'What is the maximum number of birds on screen at the same time?'
|
159 |
+
or 'What color is the car that appears at the 15-second mark?'.
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
str: A string containing the answer to the query based on the video analysis.
|
163 |
+
"""
|
164 |
+
# Tu código de validación y ejecución de la cadena
|
165 |
+
_, file_extension = os.path.splitext(gcp_uri)
|
166 |
+
if file_extension.lower() != '.mp4':
|
167 |
+
return "Error: The video cannot be processed because it is not a .mp4 file. The gcp_uri must point to a .mp4 file."
|
168 |
+
|
169 |
+
# He notado que en tu `chain.invoke` usas "video_uri" pero el ChatPromptTemplate usa "{video_uri}".
|
170 |
+
# Sin embargo, tu función no tiene un parámetro `video_uri`. Debería ser `gcp_uri`. Lo corrijo aquí.
|
171 |
+
chat_prompt = ChatPromptTemplate.from_messages([
|
172 |
+
("system", SYSTEM_PROMPT_VIDEO),
|
173 |
+
("human", [
|
174 |
+
"{query}",
|
175 |
+
{
|
176 |
+
"type": "media",
|
177 |
+
"file_uri": "{video_uri}", # <-- Esta clave debe coincidir con la de invoke
|
178 |
+
"mime_type": "video/mp4"
|
179 |
+
}
|
180 |
+
]),
|
181 |
+
])
|
182 |
+
|
183 |
+
# Suponiendo que `llm_flash` está definido
|
184 |
+
chain = chat_prompt | llm_flash | StrOutputParser()
|
185 |
+
|
186 |
+
# La clave en invoke debe coincidir con la del prompt template: "video_uri"
|
187 |
+
result = chain.invoke({
|
188 |
+
"query": query,
|
189 |
+
"video_uri": gcp_uri # <-- Usar la clave correcta aquí
|
190 |
+
})
|
191 |
+
|
192 |
+
return result
|
193 |
+
|
194 |
+
@tool
|
195 |
+
def query_audio(gcp_uri: str, query: str) -> str:
|
196 |
+
"""Analyzes an audio file from a Google Cloud Storage (GCS) URI to answer a specific question about its content.
|
197 |
+
|
198 |
+
This tool is ideal for tasks like transcription, speaker identification, sound analysis,
|
199 |
+
or answering questions about speech or music within an audio file.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
gcp_uri (str): The full Google Cloud Storage URI for the audio file.
|
203 |
+
It MUST be a .mp3 file and the URI MUST start with 'gs://'.
|
204 |
+
query (str): A clear, specific question about the audio's content.
|
205 |
+
For example: 'Transcribe the speech in this audio,' 'Is the speaker male or female?'
|
206 |
+
or 'What song is playing in the background?'.
|
207 |
+
|
208 |
+
Returns:
|
209 |
+
str: A string containing the answer to the query based on the audio analysis.
|
210 |
+
"""
|
211 |
+
# Código de validación y ejecución
|
212 |
+
_, file_extension = os.path.splitext(gcp_uri)
|
213 |
+
if file_extension.lower() != '.mp3':
|
214 |
+
return "Error: The audio cannot be processed because it is not a .mp3 file. The gcp_uri must point to a .mp3 file."
|
215 |
+
|
216 |
+
chat_prompt = ChatPromptTemplate.from_messages([
|
217 |
+
("system", SYSTEM_PROMPT_AUDIO),
|
218 |
+
("human", [
|
219 |
+
"{query}",
|
220 |
+
{
|
221 |
+
"type": "media",
|
222 |
+
"file_uri": "{audio_uri}",
|
223 |
+
"mime_type": "audio/mpeg"
|
224 |
+
}
|
225 |
+
]),
|
226 |
+
])
|
227 |
+
|
228 |
+
# Suponiendo que `llm_flash` está definido
|
229 |
+
chain = chat_prompt | llm_flash | StrOutputParser()
|
230 |
+
|
231 |
+
result = chain.invoke({
|
232 |
+
"query": query,
|
233 |
+
"audio_uri": gcp_uri
|
234 |
+
})
|
235 |
+
|
236 |
+
return result
|
237 |
+
|
238 |
+
@tool
|
239 |
+
def query_image(gcp_uri: str, query: str) -> str:
|
240 |
+
"""Analyzes an image file from a Google Cloud Storage (GCS) URI to answer a question about its visual content.
|
241 |
+
|
242 |
+
This tool is ideal for tasks like reading text from an image (OCR), identifying objects,
|
243 |
+
describing a scene, or answering any question based on the visual information in a static image.
|
244 |
+
|
245 |
+
Args:
|
246 |
+
gcp_uri (str): The full Google Cloud Storage URI for the image file.
|
247 |
+
It MUST be a .png file and the URI MUST start with 'gs://'.
|
248 |
+
query (str): A clear, specific question about the image's content.
|
249 |
+
For example: 'What text is written on the street sign?',
|
250 |
+
'How many people are in this picture?', or 'Describe the main activity in this image.'
|
251 |
+
|
252 |
+
Returns:
|
253 |
+
str: A string containing the answer to the query based on the image's content.
|
254 |
+
"""
|
255 |
+
# Código de validación y ejecución
|
256 |
+
_, file_extension = os.path.splitext(gcp_uri)
|
257 |
+
if file_extension.lower() != '.png':
|
258 |
+
return "Error: The image cannot be processed because it is not a .png file. The gcp_uri must point to a .png file."
|
259 |
+
|
260 |
+
# Corregido: 'hat_prompt' a 'chat_prompt'
|
261 |
+
chat_prompt = ChatPromptTemplate.from_messages([
|
262 |
+
("system", SYSTEM_PROMPT_IMAGE),
|
263 |
+
("human", [
|
264 |
+
"{query}",
|
265 |
+
{
|
266 |
+
"type": "image_url",
|
267 |
+
"image_url": {"url": "{gcp_uri}"} # Formato estándar para image_url
|
268 |
+
}
|
269 |
+
]),
|
270 |
+
])
|
271 |
+
|
272 |
+
# Suponiendo que `llm_flash` está definido
|
273 |
+
chain = chat_prompt | llm_flash | StrOutputParser()
|
274 |
+
|
275 |
+
result = chain.invoke({
|
276 |
+
"query": query,
|
277 |
+
"gcp_uri": gcp_uri
|
278 |
+
})
|
279 |
+
|
280 |
+
return result
|
281 |
+
|
282 |
+
def visit_webpage(url: str) -> str:
|
283 |
+
try:
|
284 |
+
# Send a GET request to the URL with a 20-second timeout
|
285 |
+
response = requests.get(url, timeout=20)
|
286 |
+
response.raise_for_status() # Raise an exception for bad status codes
|
287 |
+
|
288 |
+
# Convert the HTML content to Markdown
|
289 |
+
markdown_content = markdownify(response.text).strip()
|
290 |
+
|
291 |
+
# Remove multiple line breaks
|
292 |
+
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
293 |
+
|
294 |
+
return truncate_content(markdown_content, 10000)
|
295 |
+
|
296 |
+
except requests.exceptions.Timeout:
|
297 |
+
return "The request timed out. Please try again later or check the URL."
|
298 |
+
except RequestException as e:
|
299 |
+
return f"Error fetching the webpage: {str(e)}"
|
300 |
+
except Exception as e:
|
301 |
+
return f"An unexpected error occurred: {str(e)}"
|
302 |
+
|
303 |
+
visit_webpage_with_retry = RunnableLambda(visit_webpage).with_retry(
|
304 |
+
wait_exponential_jitter=True,
|
305 |
+
stop_after_attempt=3,
|
306 |
+
)
|
307 |
+
|
308 |
+
visit_webpage_tool = convert_runnable_to_tool(
|
309 |
+
visit_webpage_with_retry,
|
310 |
+
name="visit_webpage",
|
311 |
+
description=(
|
312 |
+
"Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
|
313 |
+
),
|
314 |
+
arg_types={"url": "str"},
|
315 |
+
)
|
316 |
+
|
317 |
+
python_tool = PythonREPLTool()
|
318 |
+
|
319 |
+
search = GoogleSerperAPIWrapper()
|
320 |
+
search_tool = Tool(name="web_search", func=search.run, description="useful for when you need to ask with search on the internet")
|
321 |
+
|
322 |
+
wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())
|
323 |
+
wikipedia_tool = Tool(name="wikipedia_search", func=wikipedia.run, description="useful for when you need to ask with search on Wikipedia")
|
324 |
+
|
325 |
+
def get_tools():
|
326 |
+
visit_webpage_with_retry = RunnableLambda(visit_webpage).with_retry(
|
327 |
+
wait_exponential_jitter=True,
|
328 |
+
stop_after_attempt=3,
|
329 |
+
)
|
330 |
+
|
331 |
+
visit_webpage_tool = convert_runnable_to_tool(
|
332 |
+
visit_webpage_with_retry,
|
333 |
+
name="visit_webpage",
|
334 |
+
description=(
|
335 |
+
"Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
|
336 |
+
),
|
337 |
+
arg_types={"url": "str"},
|
338 |
+
)
|
339 |
+
|
340 |
+
python_tool = PythonREPLTool()
|
341 |
+
|
342 |
+
search = GoogleSerperAPIWrapper()
|
343 |
+
search_tool = Tool(name="web_search", func=search.run, description="useful for when you need to ask with search on the internet")
|
344 |
+
|
345 |
+
wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())
|
346 |
+
wikipedia_tool = Tool(name="wikipedia_search", func=wikipedia.run, description="useful for when you need to ask with search on Wikipedia")
|
347 |
+
|
348 |
+
tools = [python_tool, search_tool, wikipedia_tool, visit_webpage_tool, query_video, query_image, query_audio]
|
349 |
+
|
350 |
+
return tools
|