File size: 16,562 Bytes
9d61c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import json
from typing import Dict, List

# Load the ID mapping
with open("training/datasets/speaker_id_mapping_libri.json") as f:
    id_mapping = json.load(f)

# Create a reverse mapping
reverse_mapping: Dict[int, int] = {int(v): int(k) for k, v in id_mapping.items()}

# Selected for the fine-tuning
# train-960 subset of LibriTTS
selected_speakers = [
    574,  # Daniel Shorten 	M 	train-clean-100
    242,  # J. Hall 	M 	train-other-500
    536,  # Robert Flach 	M 	train-other-500
    82,  # Andy Minter 	M 	train-other-500
    672,  # Stuart Bell 	M 	train-other-500
    315,  # Jean Crevier 	M 	train-other-500
    628,  # Bryan Ness 	M 	train-clean-100
    61,  # John Greenman 	M 	train-other-500
    649,  # Scarlett! 	F 	train-clean-360
    105,  # Marian Brown 	F 	train-clean-360
    399,  # entada 	F 	train-clean-360
    89,  # 	Paula Berinstein 	F 	train-clean-360
    502,  # Lee Elliott 	F 	train-other-500
    102,  # Maureen S. O'Brien 	F 	train-clean-100
    544,  # Miranda Stinson 	F 	train-clean-360
    653,  # cucciasv 	F 	train-other-500
    465,  # Leonie Rose 	F 	train-clean-100
    96,  # Kymm Zuckert 	F 	train-other-500
    447,  # Lee Ann Howlett 	F 	train-clean-360
    165,  # 	Elisabeth Shields 	F 	train-clean-100
    430,  # 	Millbeach 	F 	train-other-500
    214,  # Scott Splavec 	M 	train-clean-100
    666,  # Kelly Dougherty 	M 	train-clean-360
    481,  # Scott Sherris 	M 	train-clean-360
    463,  # Chris Hughes 	M 	train-other-500
    273,  # Andrew Lebrun 	M 	train-other-500
    172,  # Harvey Chinn 	M 	train-other-500
    83,  # Graham Williams 	M 	train-other-500
    523,  # Michael Loftus 	M 	train-clean-360
    38,  # Kurt Copeland 	M 	train-clean-360
    248,  # fieldsofgold 	M 	train-other-500
    234,  # Menno 	M 	train-other-500
    145,  # Mr. Baby Man 	M 	train-clean-360
    250,  # Quentin 	M 	train-clean-360
    498,  # Chris Gladis 	M 	train-clean-100
    123,  # Sean McGaughey 	M 	train-clean-360
    171,  # Paul Harvey 	M 	train-clean-360
    49,  # 	Kristen McQuillin 	F 	train-clean-100
    588,  # 	Kalynda 	F 	train-clean-360
    117,  # 	Caitlin Kelly 	F 	train-clean-360
    657,  # Shannon 	F 	train-other-500
    275,  # Zale Schafer (Rose May Chamberlin Memorial Foundat 	F 	train-clean-360
    604,  # Anne-Marie 	F 	train-other-500
    64,  # Christiane Levesque 	F 	train-clean-360
    685,  # Nikki Sullivan 	F 	train-clean-100
    355,  # Lana Taylor 	F 	train-clean-100
    185,  # Kim Braun 	F 	train-clean-360
    52,  # Cori Samuel 	F 	train-other-500
    218,  # Joy Chan 	F 	train-other-500
    549,  # AmyAG 	F 	train-other-500
    617,  # PJ 	F 	train-other-500
    414,  # Christabel 	F 	train-clean-100
    382,  # Kelli Robinson 	F 	train-clean-360
    76,  # 	ML Cohen 	M 	train-other-500
    176,  # Micah Sheppard 	M 	train-clean-360
    233,  # mikenkat 	M 	train-clean-360
    390,  # JimmyLogan 	M 	train-clean-360
    393,  # 	Tim Lundeen 	M 	train-clean-360
    425,  # RedToby 	M 	train-clean-360
    398,  # Sam Fold 	M 	train-other-500
    372,  # Jim Mullins 	M 	train-clean-360
    99,  # Stewart Wills 	M 	train-clean-100
    340,  # 	Nick Gallant 	M 	train-clean-100
    40,  # JemmaBlythe 	F 	train-other-500
    118,  # 	Brenda Dayne 	F 	train-clean-360
    640,  # David A. Stokely 	M 	train-other-500
    50,  # Dan Threetrees 	M 	train-clean-360
    373,  # Brooks Seveer 	M 	train-clean-360
    124,  # Steve Karafit 	M 	train-clean-100
    314,  # Carl Vonnoh, III 	M 	train-clean-360
    531,  # Fr. Richard Zeile of Detroit 	M 	train-other-500
    383,  # Mike Roop 	M 	train-other-500
    710,  # Sheila Morton 	F 	train-clean-100
    450,  # Heather Duncan 	F 	train-clean-360
    645,  # Micah 	M 	train-other-500
    517,  # Madame Tusk 	F 	train-other-500
    479,  # Wina Hathaway 	F 	train-other-500
    30,  # Ophelia Darcy 	F 	train-other-500
    220,  # Tina Tilney 	F 	train-clean-360
    63,  # Linda Wilcox 	F 	train-other-500
    283,  # Bethany Simpson 	F 	train-clean-360
    644,  # Cynthia Zocca 	F 	train-clean-360
    677,  # Allyson Hester 	F 	train-other-500
    21,  # Kelly Bescherer 	F 	train-other-500
    552,  # Mim Ritty 	F 	train-clean-100
    80,  # 	Fox in the Stars 	F 	train-clean-100
    394,  # swroot 	F 	train-clean-360
    426,  # Megan Stemm-Wade 	F 	train-clean-100
    91,  # Chris Goringe 	M 	train-other-500
    108,  # Kevin McAsh 	M 	train-clean-360
    130,  # 	Peter of Buckinghamshire England 	M 	train-other-500
    661,  # James Gladwin 	M 	train-other-500
    216,  # Dave Ranson 	M 	train-clean-100
    164,  # Ed Good 	M 	train-other-500
    308,  # Eric Connover 	M 	train-other-500
    569,  # Arouet 	M 	train-clean-360
    313,  # Tim Bulkeley 	M 	train-other-500
    212,  # Glen Hallstrom 	M 	train-other-500
    15,  # 	Chip 	M 	train-other-500
    469,  # Christian Pecaut 	M 	train-clean-360
    294,  # 	Diana Kiesners 	F 	train-clean-360
    192,  # Nocturna 	F 	train-clean-100
    73,  # Claire Goget 	F 	train-clean-100
    417,  # Kiki Baessell 	F 	train-clean-360
    636,  # Matthew Howell 	F 	train-other-500
    36,  # chriss the girl 	F 	train-other-500
    668,  # Jan Baxter 	F 	train-clean-360
    403,  # Igor Teaforay 	F 	train-clean-360
    618,  # Linnea 	F 	train-other-500
    596,  # Jo 	F 	train-other-500
    499,  # Tammy Sanders 	F 	train-clean-100
    207,  # Sage Tyrtle 	F 	train-other-500
    1346,  # Jeanie 	F 	train-other-500
    1109,  # Martin Geeson 	M 	train-other-500
    770,  # Pete Williams, Pittsburgh, PA 	M 	train-clean-360
    1247,  # Sarah LuAnn 	F 	train-clean-100
    1526,  # 	Mike Harris 	M 	train-other-500
    908,  # Quentin Manuel 	M 	train-clean-360
    1183,  # 	Evelyn Clarke 	F 	train-other-500
    1438,  # Tom Barron 	M 	train-other-500
    1022,  # 	peac 	M 	train-clean-100
    1603,  # 	Christine Rodriguez 	F 	train-clean-360
    1425,  # 	Jonah Cummings 	M 	train-clean-360
    731,  # 	Priya, India 	F 	train-other-500
    782,  # Alec Daitsman 	M 	train-clean-360
    1090,  # Termin Dyan 	M 	train-other-500
    995,  # Parrot 	M 	train-other-500
    923,  # Jane Greensmith 	F 	train-clean-360
    766,  # Clive Catterall 	M 	train-other-500
    822,  # kristiface 	F 	train-clean-360
    897,  # Jan Dawn Doronila 	F 	train-clean-360
    1579,  # Linda Velwest 	F 	train-clean-360
    964,  # Utek 	M 	train-clean-360
    1414,  # 	Preston Scrape 	M 	train-other-500
    834,  # Serin 	F 	train-other-500
    1302,  # davidb 	M 	train-clean-360
    1135,  # Linda Andrus 	F 	train-clean-360
    1440,  # 	P Moscato 	F 	train-clean-360
    870,  # Barbara Bulkeley 	F 	train-clean-360
    1256,  # Graeme Dunlop 	M 	train-other-500
    1255,  # Daniel Paashaus 	M 	train-other-500
    1157,  # Bev J Stevens 	F 	train-clean-360
    934,  # Darla 	F 	train-other-500
    1281,  # garbageman99 	M 	train-clean-360
    819,  # n8evv 	M 	train-clean-360
    1041,  # mjbrichant 	F 	train-other-500
    863,  # K Hindall 	F 	train-clean-360
    1303,  # kiwafruit 	F 	train-clean-100
    1115,  # Rachel Gatwood 	F 	train-clean-360
    1539,  # Nathan Jordan 	M 	train-other-500
    1428,  # Gary Dzierlenga 	M 	train-other-500
    1049,  # Diana Solomon 	F 	train-other-500
    1546,  # Carrie Heyes 	F 	train-other-500
    1089,  # Bill Ruhsam 	M 	train-clean-360
    1142,  # Jonathan Burchard 	M 	train-other-500
    1375,  # Frank Adams 	M 	train-clean-360
    881,  # mpetranech 	M 	train-other-500
    798,  # Wyatt 	M 	train-other-500
    1647,  # 	Patrick Reinhart 	M 	train-clean-360
    1587,  # Claudia Wilson 	F 	train-clean-360
    830,  # musici123 	F 	train-other-500
    1592,  # jerryB 	M 	train-other-500
    839,  # Ben Dutton 	M 	train-other-500
    835,  # Rachel Lintern 	F 	train-other-500
    1273,  # gmiteva 	F 	train-other-500
    932,  # Raerity 	F 	train-other-500
    1108,  # Paul McCartan 	M 	train-other-500
    732,  # Tysto 	M 	train-clean-360
    781,  # Megan Kunkel 	F 	train-other-500
    1555,  # Andrew Nelson 	M 	train-clean-360
    1437,  # Charles RUHE 	M 	train-clean-360
    1402,  # Angel5 	F 	train-other-500
    963,  # MichelleHarris 	F 	train-clean-360
    1181,  # J. Rebecca Franklin 	F 	train-clean-360
    818,  # Matt Warzel 	F 	train-clean-360
    1285,  # Ric F 	M 	train-clean-100
    797,  # Chris Jones 	F 	train-other-500
    1505,  # Rom Maczka 	M 	train-clean-360
    1214,  # David Baldwin 	M 	train-clean-360
    1636,  # jessecoy 	M 	train-other-500
    929,  # Petra 	F 	train-other-500
    1171,  # 	Roberta Carlisle 	F 	train-other-500
    817,  # texttalker 	M 	train-clean-360
    1433,  # browneyedgirl32382 	F 	train-clean-360
    1158,  # StarrDog 	M 	train-other-500
    1000,  # artos 	M 	train-other-500
    848,  # senshisteph 	F 	train-other-500
    1596,  # Joyce Couch 	F 	train-other-500
    757,  # Roger Melin 	M 	train-clean-360
    1168,  # Epistomolus 	M 	train-clean-100
    741,  # Nick Marsh 	M 	train-other-500
    1649,  # Phineas Redux 	M 	train-other-500
    851,  # Jennifer Lott 	F 	train-clean-360
    808,  # M. J. Boyle 	F 	train-other-500
    1595,  # Matthew Reece 	M 	train-clean-360
    1370,  # Savanna Herrold 	F 	train-other-500
    1565,  # bryan.peterson 	M 	train-other-500
    944,  # Sarafina Suransky 	F 	train-other-500
    1268,  # A. Janelle Risa 	F 	train-clean-100
    771,  # Isosceles 	F 	train-clean-360
    752,  # Cat Schirf 	F 	train-other-500
    800,  # Jack Farrell 	M 	train-clean-360
    1005,  # Beatrice 	F 	train-other-500
    1229,  # RoseA 	F 	train-clean-360
    943,  # Matthew C. Heckel 	M 	train-clean-360
    891,  # anoldfashiongirl 	F 	train-other-500
    1226,  # serenitylee 	F 	train-clean-360
    1253,  # Caroline Shapiro 	F 	train-other-500
    1204,  # Dale A. Bade 	F 	train-clean-360
    1230,  # Troy Bond 	M 	train-other-500
    791,  # David Kleparek 	M 	train-clean-100
    1184,  # Joseph Couves 	F 	train-other-500
    1001,  # TriciaG 	F 	train-clean-360
    804,  # FirstKnight 	F 	train-other-500
    1641,  # Kirsten Wever 	F 	train-clean-100
    1259,  # 	Megan Argo 	F 	train-other-500
    1231,  # Abigail Bartels 	F 	train-other-500
    1410,  # 	Zachary Johnson 	M 	train-other-500
    1030,  # Ancient mariner 	M 	train-other-500
    1093,  # Katie Riley 	F 	train-clean-360
    1254,  # Rosie 	F 	train-clean-100
    1365,  # Eric Leach 	M 	train-clean-360
    831,  # David Federman 	M 	train-other-500
    1989,  # 	Joannemmp 	F 	train-clean-100
    1707,  # David Olson 	M 	train-other-500
    1849,  # Fred DeBerardinis 	M 	train-clean-100
    1808,  # Rebecca King 	F 	train-clean-360
    2292,  # Arnold 	M 	train-clean-100
    2415,  # Patrick Eaton 	M 	train-other-500
    1656,  # Sharon Omi 	F 	train-clean-100
    1676,  # Gargoyle 	M 	train-clean-360
    1881,  # Julienne 	F 	train-other-500
    2036,  # T.K. Kirven 	F 	train-other-500
    1761,  # EliMarieHK 	F 	train-other-500
    2115,  # Pete Milan 	M 	train-other-500
    1803,  # Susan Hanfield 	F 	train-clean-360
    1798,  # C. L. W. Rollins 	F 	train-other-500
    1723,  # Rachel Bossier 	F 	train-other-500
    2341,  # Haili 	F 	train-other-500
    2468,  # Erin Schellhase 	F 	train-clean-360
    1725,  # Ruth Kidson 	F 	train-other-500
    2010,  # Peggy 	F 	train-other-500
    1853,  # Ron Altman 	M 	train-other-500
    2359,  # Doug Reed 	M 	train-other-500
    2422,  # Jude Somers 	F 	train-clean-360
    2234,  # Coreena 	F 	train-other-500
    2156,  # 	C F de Rosset 	F 	train-other-500
    2483,  # Tammy Porter 	F 	train-clean-360
    1781,  # humanode 	M 	train-clean-360
    2275,  # NatalieOram 	F 	train-other-500
    2390,  # sdaeley17 	M 	train-clean-360
    2314,  # Cheri Jordan 	F 	train-clean-360
    2413,  # Joanne Rochon 	F 	train-clean-360
    1697,  # 	Lonelle Yoder 	F 	train-other-500
    1718,  # 	Caroline Driggs 	F 	train-other-500
    2387,  # Brett G. Hirsch 	M 	train-other-500
    2331,  # Madam Fickle 	F 	train-clean-100
    1783,  # Sarah Crampton 	F 	train-clean-360
    2397,  # Rebecca Braunert-Plunkett 	F 	train-other-500
    2357,  # William Gavula 	M 	train-other-500
    1670,  # dmbrought 	M 	train-other-500
    1987,  # Andrew White 	M 	train-clean-360
    1755,  # 	Yvonne Smith 	F 	train-clean-360
    2192,  # Sammy Bean 	M 	train-other-500
    1716,  # EyeBones 	F 	train-clean-360
    1828,  # David Wales 	M 	train-clean-100
    2251,  # Wiley Combs 	M 	train-clean-360
    2065,  # Muriel 	F 	train-clean-360
    2017,  # CaprishaPage 	F 	train-other-500
    1947,  # Barbara Edelman 	F 	train-other-500
    1738,  # Lois C. Johnson 	F 	train-clean-360
    1791,  # David Cummings 	M 	train-clean-360
    2045,  # Linda Ciano 	F 	train-clean-360
    2452,  # 	Walt Allan 	M 	train-other-500
    2040,  # MJ Franck 	F 	train-other-500
    1831,  # Nigel Boydell 	M 	train-other-500
    2371,  # Alexander Hatton 	M 	train-clean-360
    1954,  # Szindbad 	M 	train-other-500
    1836,  # Kendall Ashyby 	F 	train-other-500
    2436,  # 	josembi 	M 	train-other-500
    2383,  # 	Emma Joyce 	F 	train-other-500
    2278,  # Jake Woldstad 	M 	train-clean-360
    1741,  # 	anjieliu 	F 	train-other-500
    1857,  # Amanda Friday 	F 	train-clean-360
    2370,  # 	gloriousjob 	M 	train-clean-360
    1907,  # 	Snapdragon 	F 	train-other-500
    2225,  # 	nomorejeffs 	M 	train-clean-360
    2439,  # KHand 	F 	train-clean-360
    2239,  # amaskill 	M 	train-other-500
    2007,  # Art Leung 	F 	train-clean-360
    2283,  # Tim Cote 	M 	train-clean-360
    1712,  # 	Steve Belleguelle 	M 	train-other-500
    2094,  # Meg Cowan 	F 	train-clean-360
    1772,  # 	haggisreflux 	M 	train-clean-360
    2317,  # 	helengraves 	F 	train-clean-360
    2241,  # 	Steven Reynolds 	M 	train-clean-360
    2011,  # 	pekein 	M 	train-clean-360
    1826,  # 	John Hoerr 	M 	train-clean-100
    1695,  # Tina Nuzzi 	F 	train-clean-360
    2451,  # DeanOBuchanan 	M 	train-clean-100
    1771,  # Chelsea S. 	F 	train-other-500
    2441,  # Alison Stewart 	F 	train-clean-360
    1745,  # Janet 	F 	train-clean-360
    2358,  # 	Betty Perry 	F 	train-clean-360
    2197,  # Mike Nelson 	M 	train-other-500
    2014,  # 	Eden Rea-Hedrick 	F 	train-other-500
    1672,  # 	Mike Wajda 	M 	train-clean-360
    2394,  # TinaNygard2 	F 	train-clean-100
    1657,  # alwpoe 	M 	train-clean-360
    1728,  # Vinnie Tesla 	M 	train-clean-360
    1805,  # 	Vince Dee 	M 	train-clean-100
    2143,  # 	Suebee 	F 	train-clean-360
    2084,  # Eberle Thomas 	M 	train-other-500
    2479,  # Daisy Flaim 	F 	train-clean-100
    2152,  # Kristel Tretter 	F 	train-clean-360
    2268,  # Greg Giordano 	M 	train-clean-360
    1839,  # James E. Carson 	M 	train-clean-360
    2056,  # 	acloward 	M 	train-clean-360
    1814,  # polkadotish 	F 	train-other-500
    2127,  # Ron Lockhart 	M 	train-clean-100
    2114,  # Larry Beasley 	M 	train-clean-360
    2469,  # 	Kevin Owens 	M 	train-clean-100
    2447,  # Deena Rhoads 	F 	train-clean-360
    1724,  # Juliana M. 	F 	train-clean-360
    1869,  # 	NastassiaS 	F 	train-other-500
    2209,  # Samantha J Gubitz 	F 	train-clean-360
    2171,  # 	Carolyne 	F 	train-other-500
    2403,  # Ian Quinlan 	M 	train-clean-360
    2032,  # 	doonaboon 	M 	train-other-500
    2075,  # Joy S Grape 	F 	train-clean-360
]

# Convert the model speaker IDs back to the dataset speaker IDs
# dataset_speaker_ids: List[int] = [
#     reverse_mapping.get(int(speaker_id)) for speaker_id in selected_speakers
# ]  # type: ignore

# Save the selected speaker IDs
latest_selection: List[int] = [
    574,
    649,
    102,
    544,
    653,
    666,
    481,
    248,
    123,
    171,
    604,
    64,
    685,
    52,
    218,
    617,
    414,
    425,
    118,
    50,
    373,
    314,
    710,
    450,
    645,
    517,
    63,
    644,
    80,
    394,
    91,
    108,
    661,
    164,
    308,
    469,
    192,
    417,
    668,
    596,
    1109,
    770,
    1247,
    908,
    782,
    995,
    923,
    822,
    1414,
    1302,
    1135,
    1440,
    1281,
    1041,
    1142,
    881,
    835,
    932,
    732,
    1402,
    929,
    817,
    1433,
    1596,
    851,
    1370,
    1204,
    1230,
    791,
    804,
    1808,
    1656,
    2115,
    2341,
    2468,
    1718,
    1783,
    1755,
    2192,
    2371,
    1836,
    1741,
    2439,
    1712,
    2197,
    1728,
    1805,
    2143,
    2084,
    2056,
    2114,
    2447,
    1869,
    2209,
]

dataset_speaker_ids: List[int] = [
    reverse_mapping.get(int(speaker_id)) for speaker_id in latest_selection
]  # type: ignore