File size: 1,646 Bytes
9d61c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import unittest

import torch

from models.helpers import (
    stride_lens_downsampling,
)


class TestStrideLens(unittest.TestCase):
    def test_stride_lens(self):
        # Define test case inputs
        input_lengths = torch.tensor([5, 7, 10, 12])
        stride = 2

        # Correct output for this would be ceil([5, 7, 10, 12] / 2) => [3, 4, 5, 6]
        expected_output = torch.tensor([3, 4, 5, 6])

        # Call the function with the test cases
        output = stride_lens_downsampling(input_lengths, stride)

        # Check if the output is a tensor
        self.assertIsInstance(output, torch.Tensor)

        # Check if the output shape is as expected
        self.assertEqual(output.shape, expected_output.shape)

        # Check if the output values are as expected
        self.assertTrue(torch.all(output.eq(expected_output)))

    def test_stride_lens_default_stride(self):
        # Define test case inputs. Here, we do not provide the stride.
        input_lengths = torch.tensor([10, 20, 4, 11])

        # Correct output for this would be ceil([10, 20, 4, 11] / 2) => [5, 10, 2, 6]
        expected_output = torch.tensor([5, 10, 2, 6])

        # Call the function with the test cases
        output = stride_lens_downsampling(input_lengths)

        # Check if the output is a tensor
        self.assertIsInstance(output, torch.Tensor)

        # Check if the output shape is as expected
        self.assertEqual(output.shape, expected_output.shape)

        # Check if the output values are as expected
        self.assertTrue(torch.all(output.eq(expected_output)))


if __name__ == "__main__":
    unittest.main()