Spaces:
Running
Running
File size: 19,812 Bytes
9d61c9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
from typing import Dict, Tuple
import torch
from torch import Tensor, nn
from torch.nn import Module
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from models.config import (
SUPPORTED_LANGUAGES,
AcousticModelConfigType,
PreprocessingConfig,
symbols,
)
from models.helpers import (
positional_encoding,
tools,
)
from models.tts.delightful_tts.attention import Conformer
from models.tts.delightful_tts.constants import LEAKY_RELU_SLOPE
from models.tts.delightful_tts.reference_encoder import (
PhonemeLevelProsodyEncoder,
UtteranceLevelProsodyEncoder,
)
from .alignment_network import AlignmentNetwork
from .duration_adaptor import DurationAdaptor
from .energy_adaptor import EnergyAdaptor
from .phoneme_prosody_predictor import PhonemeProsodyPredictor
from .pitch_adaptor_conv import PitchAdaptorConv
class EmbeddingPadded(Module):
r"""EmbeddingPadded is a module that provides embeddings for input indices with support for padding.
Args:
num_embeddings (int): Size of the dictionary of embeddings.
embedding_dim (int): The size of each embedding vector.
padding_idx (int): The index of the padding token in the input indices.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int):
super().__init__()
padding_mult = torch.ones((num_embeddings, 1), dtype=torch.int64)
padding_mult[padding_idx] = 0
self.register_buffer("padding_mult", padding_mult)
self.embeddings = nn.parameter.Parameter(
tools.initialize_embeddings((num_embeddings, embedding_dim)),
)
def forward(self, idx: Tensor) -> Tensor:
r"""Forward pass of the EmbeddingPadded module.
Args:
idx (Tensor): Input indices.
Returns:
Tensor: The embeddings for the input indices.
"""
embeddings_zeroed = self.embeddings * self.padding_mult
x = F.embedding(idx, embeddings_zeroed)
return x
class AcousticModel(Module):
r"""The DelightfulTTS AcousticModel class represents a PyTorch module for an acoustic model in text-to-speech (TTS).
The acoustic model is responsible for predicting speech signals from phoneme sequences.
The model comprises multiple sub-modules including encoder, decoder and various prosody encoders and predictors.
Additionally, a pitch and length adaptor are instantiated.
Args:
preprocess_config (PreprocessingConfig): Object containing the configuration used for preprocessing the data
model_config (AcousticModelConfigType): Configuration object containing various model parameters
n_speakers (int): Total number of speakers in the dataset
leaky_relu_slope (float, optional): Slope for the leaky relu. Defaults to LEAKY_RELU_SLOPE.
Note:
For more specific details on the implementation of sub-modules please refer to their individual respective modules.
"""
def __init__(
self,
preprocess_config: PreprocessingConfig,
model_config: AcousticModelConfigType,
n_speakers: int,
leaky_relu_slope: float = LEAKY_RELU_SLOPE,
):
super().__init__()
self.emb_dim = model_config.encoder.n_hidden
self.encoder = Conformer(
dim=model_config.encoder.n_hidden,
n_layers=model_config.encoder.n_layers,
n_heads=model_config.encoder.n_heads,
embedding_dim=model_config.speaker_embed_dim + model_config.lang_embed_dim,
p_dropout=model_config.encoder.p_dropout,
kernel_size_conv_mod=model_config.encoder.kernel_size_conv_mod,
with_ff=model_config.encoder.with_ff,
)
self.pitch_adaptor_conv = PitchAdaptorConv(
channels_in=model_config.encoder.n_hidden,
channels_hidden=model_config.variance_adaptor.n_hidden,
channels_out=1,
kernel_size=model_config.variance_adaptor.kernel_size,
emb_kernel_size=model_config.variance_adaptor.emb_kernel_size,
dropout=model_config.variance_adaptor.p_dropout,
leaky_relu_slope=leaky_relu_slope,
)
self.energy_adaptor = EnergyAdaptor(
channels_in=model_config.encoder.n_hidden,
channels_hidden=model_config.variance_adaptor.n_hidden,
channels_out=1,
kernel_size=model_config.variance_adaptor.kernel_size,
emb_kernel_size=model_config.variance_adaptor.emb_kernel_size,
dropout=model_config.variance_adaptor.p_dropout,
leaky_relu_slope=leaky_relu_slope,
)
# NOTE: Aligner replaced with AlignmentNetwork
self.aligner = AlignmentNetwork(
in_query_channels=preprocess_config.stft.n_mel_channels,
in_key_channels=model_config.encoder.n_hidden,
attn_channels=preprocess_config.stft.n_mel_channels,
)
# NOTE: DurationAdaptor is replacement for LengthAdaptor
self.duration_predictor = DurationAdaptor(model_config)
self.utterance_prosody_encoder = UtteranceLevelProsodyEncoder(
preprocess_config,
model_config,
)
self.utterance_prosody_predictor = PhonemeProsodyPredictor(
model_config=model_config,
phoneme_level=False,
)
self.phoneme_prosody_encoder = PhonemeLevelProsodyEncoder(
preprocess_config,
model_config,
)
self.phoneme_prosody_predictor = PhonemeProsodyPredictor(
model_config=model_config,
phoneme_level=True,
)
self.u_bottle_out = nn.Linear(
model_config.reference_encoder.bottleneck_size_u,
model_config.encoder.n_hidden,
)
self.u_norm = nn.LayerNorm(
model_config.reference_encoder.bottleneck_size_u,
elementwise_affine=False,
)
self.p_bottle_out = nn.Linear(
model_config.reference_encoder.bottleneck_size_p,
model_config.encoder.n_hidden,
)
self.p_norm = nn.LayerNorm(
model_config.reference_encoder.bottleneck_size_p,
elementwise_affine=False,
)
self.decoder = Conformer(
dim=model_config.decoder.n_hidden,
n_layers=model_config.decoder.n_layers,
n_heads=model_config.decoder.n_heads,
embedding_dim=model_config.speaker_embed_dim + model_config.lang_embed_dim,
p_dropout=model_config.decoder.p_dropout,
kernel_size_conv_mod=model_config.decoder.kernel_size_conv_mod,
with_ff=model_config.decoder.with_ff,
)
self.src_word_emb = EmbeddingPadded(
len(
symbols,
), # TODO: fix this, check the amount of symbols from the tokenizer
model_config.encoder.n_hidden,
padding_idx=100, # TODO: fix this from training/preprocess/tokenizer_ipa_espeak.py#L59
)
# NOTE: here you can manage the speaker embeddings, can be used for the voice export ?
# NOTE: flexibility of the model binded by the n_speaker parameter, maybe I can find another way?
# NOTE: in LIBRITTS there are 2477 speakers, we can add more, just extend the speaker_embed matrix
# Need to think about it more
self.emb_g = nn.Embedding(n_speakers, model_config.speaker_embed_dim)
self.lang_embed = Parameter(
tools.initialize_embeddings(
(len(SUPPORTED_LANGUAGES), model_config.lang_embed_dim),
),
)
self.to_mel = nn.Linear(
model_config.decoder.n_hidden,
preprocess_config.stft.n_mel_channels,
)
def get_embeddings(
self,
token_idx: torch.Tensor,
speaker_idx: torch.Tensor,
src_mask: torch.Tensor,
lang_idx: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""Given the tokens, speakers, source mask, and language indices, compute
the embeddings for tokens, speakers and languages and return the
token_embeddings and combined speaker and language embeddings
Args:
token_idx (torch.Tensor): Tensor of token indices.
speaker_idx (torch.Tensor): Tensor of speaker identities.
src_mask (torch.Tensor): Mask tensor for source sequences.
lang_idx (torch.Tensor): Tensor of language indices.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Token embeddings tensor,
and combined speaker and language embeddings tensor.
"""
# Token embeddings
token_embeddings = self.src_word_emb.forward(token_idx) # [B, T_src, C_hidden]
token_embeddings = token_embeddings.masked_fill(src_mask.unsqueeze(-1), 0.0)
# NOTE: here you can manage the speaker embeddings, can be used for the voice export ?
speaker_embeds = F.normalize(self.emb_g(speaker_idx))
lang_embeds = F.embedding(lang_idx, self.lang_embed)
# Merge the speaker and language embeddings
embeddings = torch.cat([speaker_embeds, lang_embeds], dim=2)
# Apply the mask to the embeddings and token embeddings
embeddings = embeddings.masked_fill(src_mask.unsqueeze(-1), 0.0)
token_embeddings = token_embeddings.masked_fill(src_mask.unsqueeze(-1), 0.0)
return token_embeddings, embeddings
def average_utterance_prosody(
self,
u_prosody_pred: torch.Tensor,
src_mask: torch.Tensor,
) -> torch.Tensor:
r"""Compute the average utterance prosody over the length of non-masked elements.
This method averages the output of the utterance prosody predictor over
the sequence lengths (non-masked elements). This function will return
a tensor with the same first dimension but singleton trailing dimensions.
Args:
u_prosody_pred (torch.Tensor): Tensor containing the predicted utterance prosody of dimension (batch_size, T, n_features).
src_mask (torch.Tensor): Tensor of dimension (batch_size, T) acting as a mask where masked entries are set to False.
Returns:
torch.Tensor: Tensor of dimension (batch_size, 1, n_features) containing average utterance prosody over non-masked sequence length.
"""
# Compute the real sequence lengths by negating the mask and summing along the sequence dimension
lengths = ((~src_mask) * 1.0).sum(1)
# Compute the sum of u_prosody_pred across the sequence length dimension,
# then divide by the sequence lengths tensor to calculate the average.
# This performs a broadcasting operation to account for the third dimension (n_features).
# Return the averaged prosody prediction
return u_prosody_pred.sum(1, keepdim=True) / lengths.view(-1, 1, 1)
def forward_train(
self,
x: Tensor,
speakers: Tensor,
src_lens: Tensor,
mels: Tensor,
mel_lens: Tensor,
pitches: Tensor,
langs: Tensor,
attn_priors: Tensor,
energies: Tensor,
) -> Dict[str, Tensor]:
r"""Forward pass during training phase.
For a given phoneme sequence, speaker identities, sequence lengths, mels,
mel lengths, pitches, language, and attention priors, the forward pass
processes these inputs through the defined architecture.
Args:
x (Tensor): Tensor of phoneme sequence.
speakers (Tensor): Tensor of speaker identities.
src_lens (Tensor): Long tensor representing the lengths of source sequences.
mels (Tensor): Tensor of mel spectrograms.
mel_lens (Tensor): Long tensor representing the lengths of mel sequences.
pitches (Tensor): Tensor of pitch values.
langs (Tensor): Tensor of language identities.
attn_priors (Tensor): Prior attention values.
energies (Tensor): Tensor of energy values.
Returns:
Dict[str, Tensor]: Returns the prediction outputs as a dictionary.
"""
# Generate masks for padding positions in the source sequences and mel sequences
src_mask = tools.get_mask_from_lengths(src_lens)
mel_mask = tools.get_mask_from_lengths(mel_lens)
token_embeddings, embeddings = self.get_embeddings(
token_idx=x,
speaker_idx=speakers,
src_mask=src_mask,
lang_idx=langs,
)
token_embeddings = token_embeddings.to(src_mask.device)
embeddings = embeddings.to(src_mask.device)
encoding = positional_encoding(
self.emb_dim,
max(x.shape[1], int(mel_lens.max().item())),
).to(src_mask.device)
attn_logprob, attn_soft, attn_hard, attn_hard_dur = self.aligner.forward(
x=token_embeddings,
y=mels.transpose(1, 2),
x_mask=~src_mask[:, None],
y_mask=~mel_mask[:, None],
attn_priors=attn_priors,
)
attn_hard_dur = attn_hard_dur.to(src_mask.device)
x = self.encoder(
token_embeddings,
src_mask,
embeddings=embeddings,
encoding=encoding,
)
u_prosody_ref = self.u_norm(
self.utterance_prosody_encoder(mels=mels, mel_lens=mel_lens),
)
u_prosody_pred = self.u_norm(
self.average_utterance_prosody(
u_prosody_pred=self.utterance_prosody_predictor(x=x, mask=src_mask),
src_mask=src_mask,
),
)
p_prosody_ref = self.p_norm(
self.phoneme_prosody_encoder(
x=x,
src_mask=src_mask,
mels=mels,
mel_lens=mel_lens,
encoding=encoding,
),
)
p_prosody_pred = self.p_norm(
self.phoneme_prosody_predictor(
x=x,
mask=src_mask,
),
)
x = x + self.u_bottle_out(u_prosody_pred)
x = x + self.p_bottle_out(p_prosody_pred)
# Save the residual for later use
x_res = x
x, pitch_prediction, avg_pitch_target = (
self.pitch_adaptor_conv.add_pitch_embedding_train(
x=x,
target=pitches,
dr=attn_hard_dur,
mask=src_mask,
)
)
energies = energies.to(src_mask.device)
x, energy_pred, avg_energy_target = (
self.energy_adaptor.add_energy_embedding_train(
x=x,
target=energies,
dr=attn_hard_dur,
mask=src_mask,
)
)
(
alignments_duration_pred,
log_duration_prediction,
x,
alignments,
) = self.duration_predictor.forward_train(
encoder_output=x,
encoder_output_res=x_res,
duration_target=attn_hard_dur,
src_mask=src_mask,
mel_lens=mel_lens,
)
# Change the embedding shape to match the decoder output
embeddings_out = embeddings.repeat(
1,
encoding.shape[1] // embeddings.shape[1] + 1,
1,
)[:, : encoding.shape[1], :]
# Decode the encoder output to pred mel spectrogram
decoder_output = self.decoder.forward(
x.transpose(1, 2),
mel_mask,
embeddings=embeddings_out,
encoding=encoding,
)
y_pred: torch.Tensor = self.to_mel(decoder_output)
y_pred = y_pred.permute((0, 2, 1))
return {
"y_pred": y_pred,
"pitch_prediction": pitch_prediction,
"pitch_target": avg_pitch_target,
"energy_pred": energy_pred,
"energy_target": avg_energy_target,
"log_duration_prediction": log_duration_prediction,
"u_prosody_pred": u_prosody_pred,
"u_prosody_ref": u_prosody_ref,
"p_prosody_pred": p_prosody_pred,
"p_prosody_ref": p_prosody_ref,
"alignments": alignments,
"alignments_duration_pred": alignments_duration_pred,
"attn_logprob": attn_logprob,
"attn_soft": attn_soft,
"attn_hard": attn_hard,
"attn_hard_dur": attn_hard_dur,
}
def forward(
self,
x: torch.Tensor,
speakers: torch.Tensor,
langs: torch.Tensor,
d_control: float = 1.0,
) -> torch.Tensor:
r"""Forward pass during model inference.
The forward pass receives phoneme sequence, speaker identities, languages, pitch control and
duration control, conducts a series of operations on these inputs and returns the predicted mel
spectrogram.
Args:
x (torch.Tensor): Tensor of phoneme sequences.
speakers (torch.Tensor): Tensor of speaker identities.
langs (torch.Tensor): Tensor of language identities.
d_control (float): Duration control parameter. Defaults to 1.0.
Returns:
torch.Tensor: Predicted mel spectrogram.
"""
# Generate masks for padding positions in the source sequences
src_mask = tools.get_mask_from_lengths(
torch.tensor([x.shape[1]], dtype=torch.int64),
).to(x.device)
# Obtain the embeddings for the input
x, embeddings = self.get_embeddings(
token_idx=x,
speaker_idx=speakers,
src_mask=src_mask,
lang_idx=langs,
)
# Generate positional encodings
encoding = positional_encoding(
self.emb_dim,
x.shape[1],
).to(x.device)
# Process the embeddings through the encoder
x = self.encoder(x, src_mask, embeddings=embeddings, encoding=encoding)
# Predict prosody at utterance level and phoneme level
u_prosody_pred = self.u_norm(
self.average_utterance_prosody(
u_prosody_pred=self.utterance_prosody_predictor(x=x, mask=src_mask),
src_mask=src_mask,
),
)
p_prosody_pred = self.p_norm(
self.phoneme_prosody_predictor(
x=x,
mask=src_mask,
),
)
x = x + self.u_bottle_out(u_prosody_pred)
x = x + self.p_bottle_out(p_prosody_pred)
x, _ = self.pitch_adaptor_conv.add_pitch_embedding(
x=x,
mask=src_mask,
)
x, _ = self.energy_adaptor.add_energy_embedding(
x=x,
mask=src_mask,
)
_, x, _, _ = self.duration_predictor.forward(
encoder_output=x,
src_mask=src_mask,
d_control=d_control,
)
mel_mask = tools.get_mask_from_lengths(
torch.tensor(
[x.shape[2]],
dtype=torch.int64,
),
).to(x.device)
if x.shape[1] > encoding.shape[1]:
encoding = positional_encoding(self.emb_dim, x.shape[2]).to(x.device)
# Change the embedding shape to match the decoder output
embeddings_out = embeddings.repeat(
1,
mel_mask.shape[1] // embeddings.shape[1] + 1,
1,
)[:, : mel_mask.shape[1], :]
decoder_output = self.decoder.forward(
x.transpose(1, 2),
mel_mask,
embeddings=embeddings_out,
encoding=encoding,
)
x = self.to_mel(decoder_output)
x = x.permute((0, 2, 1))
return x
|