File size: 8,416 Bytes
9d61c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from typing import List, Tuple

import torch
from torch import Tensor, nn
from torch.nn import Conv1d, ConvTranspose1d, Module
import torch.nn.functional as F
from torch.nn.utils import remove_weight_norm, weight_norm

from models.config import HifiGanConfig, HifiGanPretrainingConfig, PreprocessingConfig

from .utils import get_padding, init_weights

# Leaky ReLU slope
LRELU_SLOPE = HifiGanPretrainingConfig.lReLU_slope


class ResBlock1(Module):
    def __init__(
        self,
        channels: int,
        kernel_size: int = 3,
        dilation: List[int] = [1, 3, 5],
    ):
        r"""Initialize the ResBlock1 module.

        Args:
            channels (int): The number of channels for the ResBlock.
            kernel_size (int, optional): The kernel size for the convolutional layers. Defaults to 3.
            dilation (Tuple[int, int, int], optional): The dilation for the convolutional layers. Defaults to (1, 3, 5).
        """
        super().__init__()
        self.convs1 = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[0],
                        padding=get_padding(kernel_size, dilation[0]),
                    ),
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[1],
                        padding=get_padding(kernel_size, dilation[1]),
                    ),
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[2],
                        padding=get_padding(kernel_size, dilation[2]),
                    ),
                ),
            ],
        )
        self.convs1.apply(init_weights)

        self.convs2 = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    ),
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    ),
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    ),
                ),
            ],
        )
        self.convs2.apply(init_weights)

    def forward(self, x: Tensor) -> Tensor:
        r"""Forward pass of the ResBlock1 module.

        Args:
            x (Tensor): The input tensor.

        Returns:
            Tensor: The output tensor.
        """
        for c1, c2 in zip(self.convs1, self.convs2):
            xt = F.leaky_relu(x, LRELU_SLOPE)
            xt = c1(xt)
            xt = F.leaky_relu(xt, LRELU_SLOPE)
            xt = c2(xt)
            x = xt + x
        return x

    def remove_weight_norm(self):
        r"""Remove the weight normalization from the convolutional layers."""
        for layer in self.convs1:
            remove_weight_norm(layer)
        for layer in self.convs2:
            remove_weight_norm(layer)


class ResBlock2(Module):
    def __init__(
        self,
        channels: int,
        kernel_size: int = 3,
        dilation: List[int] = [1, 3],
    ):
        r"""Initialize the ResBlock2 module.

        Args:
            channels (int): The number of channels for the ResBlock.
            kernel_size (int, optional): The kernel size for the convolutional layers. Defaults to 3.
            dilation (Tuple[int, int], optional): The dilation for the convolutional layers. Defaults to (1, 3).
        """
        super().__init__()
        self.convs = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[0],
                        padding=get_padding(kernel_size, dilation[0]),
                    ),
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[1],
                        padding=get_padding(kernel_size, dilation[1]),
                    ),
                ),
            ],
        )
        self.convs.apply(init_weights)

    def forward(self, x: Tensor) -> Tensor:
        r"""Forward pass of the ResBlock2 module.

        Args:
            x (Tensor): The input tensor.

        Returns:
            Tensor: The output tensor.
        """
        for layer in self.convs:
            xt = F.leaky_relu(x, LRELU_SLOPE)
            xt = layer(xt)
            x = xt + x
        return x

    def remove_weight_norm(self):
        r"""Remove the weight normalization from the convolutional layers."""
        for layer in self.convs:
            remove_weight_norm(layer)


class Generator(Module):
    def __init__(self, h: HifiGanConfig, p: PreprocessingConfig):
        r"""Initialize the Generator module.

        Args:
            h (HifiGanConfig): The configuration for the Generator.
            p (PreprocessingConfig): The configuration for the preprocessing.
        """
        super().__init__()
        self.h = h
        self.p = p
        self.num_kernels = len(h.resblock_kernel_sizes)
        self.num_upsamples = len(h.upsample_rates)
        self.conv_pre = weight_norm(
            Conv1d(
                self.p.stft.n_mel_channels,
                h.upsample_initial_channel,
                7,
                1,
                padding=3,
            ),
        )
        resblock = ResBlock1 if h.resblock == "1" else ResBlock2

        self.ups = nn.ModuleList()
        for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
            self.ups.append(
                weight_norm(
                    ConvTranspose1d(
                        h.upsample_initial_channel // (2**i),
                        h.upsample_initial_channel // (2 ** (i + 1)),
                        k,
                        u,
                        padding=(k - u) // 2,
                    ),
                ),
            )

        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            resblock_list = nn.ModuleList()
            ch = h.upsample_initial_channel // (2 ** (i + 1))
            for _, (k, d) in enumerate(
                zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes),
            ):
                resblock_list.append(resblock(ch, k, d))
            self.resblocks.append(resblock_list)

        self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
        self.ups.apply(init_weights)
        self.conv_post.apply(init_weights)

    def forward(self, x: Tensor) -> Tensor:
        r"""Forward pass of the Generator module.

        Args:
            x (Tensor): The input tensor.

        Returns:
            Tensor: The output tensor.
        """
        x = self.conv_pre(x)

        for upsample_layer, resblock_group in zip(self.ups, self.resblocks):
            x = F.leaky_relu(x, LRELU_SLOPE)
            x = upsample_layer(x)
            xs = torch.zeros(x.shape, dtype=x.dtype, device=x.device)
            for resblock in resblock_group:  # type: ignore
                xs += resblock(x)
            x = xs / self.num_kernels
        x = F.leaky_relu(x)
        x = self.conv_post(x)
        x = torch.tanh(x)

        return x