File size: 1,779 Bytes
9d61c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import unittest

import torch

from models.vocoder.univnet.kernel_predictor import KernelPredictor


class TestKernelPredictor(unittest.TestCase):
    def setUp(self):
        self.batch_size = 2
        self.cond_channels = 4
        self.conv_in_channels = 3
        self.conv_out_channels = 5
        self.conv_layers = 2
        self.conv_kernel_size = 3
        self.kpnet_hidden_channels = 64
        self.kpnet_conv_size = 3
        self.kpnet_dropout = 0.0
        self.lReLU_slope = 0.1

        self.model = KernelPredictor(
            self.cond_channels,
            self.conv_in_channels,
            self.conv_out_channels,
            self.conv_layers,
            self.conv_kernel_size,
            self.kpnet_hidden_channels,
            self.kpnet_conv_size,
            self.kpnet_dropout,
            self.lReLU_slope,
        )

    def test_forward(self):
        c = torch.randn(self.batch_size, self.cond_channels, 10)
        kernels, bias = self.model(c)

        self.assertIsInstance(kernels, torch.Tensor)
        self.assertEqual(
            kernels.shape,
            (
                self.batch_size,
                self.conv_layers,
                self.conv_in_channels,
                self.conv_out_channels,
                self.conv_kernel_size,
                10,
            ),
        )

        self.assertIsInstance(bias, torch.Tensor)
        self.assertEqual(
            bias.shape, (self.batch_size, self.conv_layers, self.conv_out_channels, 10),
        )

    def test_remove_weight_norm(self):
        self.model.remove_weight_norm()

        for module in self.model.modules():
            if hasattr(module, "weight_g"):
                self.assertIsNone(module.weight_g)
                self.assertIsNone(module.weight_v)