File size: 4,290 Bytes
9d61c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import math
import unittest

import torch

from models.config import VocoderModelConfig
from models.vocoder.univnet import MultiPeriodDiscriminator


class TestMultiPeriodDiscriminator(unittest.TestCase):
    def setUp(self):
        self.batch_size = 2
        self.channels = 1
        self.time_steps = 100
        self.model_config = VocoderModelConfig()

        self.model = MultiPeriodDiscriminator(self.model_config)
        self.x = torch.randn(self.batch_size, self.channels, self.time_steps)

    def test_forward(self):
        output = self.model(self.x)

        self.assertEqual(len(output), len(self.model_config.mpd.periods))

        fmaps_dims = [
            [
                torch.Size([self.batch_size, 64, 17, self.model_config.mpd.periods[0]]),
                torch.Size([self.batch_size, 128, 6, self.model_config.mpd.periods[0]]),
                torch.Size([self.batch_size, 256, 2, self.model_config.mpd.periods[0]]),
                torch.Size([self.batch_size, 512, 1, self.model_config.mpd.periods[0]]),
                torch.Size(
                    [self.batch_size, 1024, 1, self.model_config.mpd.periods[0]],
                ),
            ],
            [
                torch.Size([self.batch_size, 64, 12, self.model_config.mpd.periods[1]]),
                torch.Size([self.batch_size, 128, 4, self.model_config.mpd.periods[1]]),
                torch.Size([self.batch_size, 256, 2, self.model_config.mpd.periods[1]]),
                torch.Size([self.batch_size, 512, 1, self.model_config.mpd.periods[1]]),
                torch.Size(
                    [self.batch_size, 1024, 1, self.model_config.mpd.periods[1]],
                ),
            ],
            [
                torch.Size([self.batch_size, 64, 7, self.model_config.mpd.periods[2]]),
                torch.Size([self.batch_size, 128, 3, self.model_config.mpd.periods[2]]),
                torch.Size([self.batch_size, 256, 1, self.model_config.mpd.periods[2]]),
                torch.Size([self.batch_size, 512, 1, self.model_config.mpd.periods[2]]),
                torch.Size(
                    [self.batch_size, 1024, 1, self.model_config.mpd.periods[2]],
                ),
            ],
            [
                torch.Size([self.batch_size, 64, 5, self.model_config.mpd.periods[3]]),
                torch.Size([self.batch_size, 128, 2, self.model_config.mpd.periods[3]]),
                torch.Size([self.batch_size, 256, 1, self.model_config.mpd.periods[3]]),
                torch.Size([self.batch_size, 512, 1, self.model_config.mpd.periods[3]]),
                torch.Size(
                    [self.batch_size, 1024, 1, self.model_config.mpd.periods[3]],
                ),
            ],
            [
                torch.Size([self.batch_size, 64, 4, self.model_config.mpd.periods[4]]),
                torch.Size([self.batch_size, 128, 2, self.model_config.mpd.periods[4]]),
                torch.Size([self.batch_size, 256, 1, self.model_config.mpd.periods[4]]),
                torch.Size([self.batch_size, 512, 1, self.model_config.mpd.periods[4]]),
                torch.Size(
                    [self.batch_size, 1024, 1, self.model_config.mpd.periods[4]],
                ),
            ],
        ]

        init_2nd_dims = [17, 12, 7, 5, 4]

        for mpd_k in range(len(self.model_config.mpd.periods)):
            fmap = output[mpd_k][0]
            x = output[mpd_k][1]

            self.assertEqual(len(x), self.batch_size)

            # Assert the shape of the feature maps
            dim_2nd = init_2nd_dims[mpd_k]
            period = self.model_config.mpd.periods[mpd_k]

            dims_expl = fmaps_dims[mpd_k]

            for i in range(len(self.model_config.mpd.periods)):
                # Assert the shape of the feature maps explicitly
                self.assertEqual(fmap[i].shape, dims_expl[i])

                # Assert the shape of the feature maps
                self.assertEqual(
                    fmap[i].shape,
                    torch.Size([self.batch_size, 2 ** (i + 6), dim_2nd, period]),
                )
                dim_2nd = math.ceil(dim_2nd / self.model_config.mpd.stride)

        self.assertEqual(len(output), len(self.model_config.mpd.periods))


if __name__ == "__main__":
    unittest.main()