Spaces:
Sleeping
Sleeping
File size: 10,624 Bytes
9d61c9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
# %%
import os
from pathlib import Path
from pprint import pprint
from lhotse.recipes import (
download_voxceleb1,
download_voxceleb2,
hifitts,
libritts,
prepare_voxceleb,
)
import pandas as pd
# %%
root_dir = Path("../../datasets_cache")
# root_dir = Path("datasets_cache")
voxceleb1_path = root_dir / "voxceleb1"
voxceleb2_path = root_dir / "voxceleb2"
hifitts_path = root_dir / "hifitts"
libritts_path = root_dir / "librittsr"
num_jobs = os.cpu_count() - 3 # type: ignore
num_jobs, hifitts_path
# %%
# voxceleb1_root = download_voxceleb1(voxceleb1_path)
# voxceleb1_root
# %%
# voxceleb2_root = download_voxceleb2(voxceleb2_path)
# voxceleb2_root
# %%
hifitts_root = hifitts.download_hifitts(hifitts_path)
hifitts_root
# %%
result = hifitts.prepare_hifitts(hifitts_root, num_jobs=num_jobs)
result
# %%
result.keys()
# %%
from lhotse import CutSet, Fbank, FbankConfig, Mfcc, MfccConfig, RecordingSet
cuts_train = CutSet.from_manifests(**result["6670_other_test"]) # type: ignore
cuts_train
# %%
pprint(cuts_train[0])
# %%
from lhotse.cut import Cut
# Filter the CutSet to only include cuts that are no more than the duration limit
duration_limit_min = 2.0
duration_limit_max = 2.5
# Duration limit in seconds
cuts_train = cuts_train.filter(
lambda cut: isinstance(cut, Cut)
and cut.duration >= duration_limit_min
and cut.duration <= duration_limit_max,
)
cuts_train
# %%
cuts_train[0].supervisions[0]
# %%
# filter_length=2048,
# hop_length=512, # NOTE: 441 ?? https://github.com/jik876/hifi-gan/issues/116#issuecomment-1436999858
# win_length=2048,
# n_mel_channels=128,
# mel_fmin=20,
# mel_fmax=11025,
fbank = Fbank(
FbankConfig(
sampling_rate=44100,
num_filters=128,
),
)
cuts_train_fbank = cuts_train.compute_and_store_features(
extractor=fbank,
storage_path=hifitts_root / "features",
num_jobs=1,
)
cuts_train_fbank
# %%
# cuts_train_fbank.to_file(hifitts_root / "cuts_train.json.gz")
# %%
cuts_train_fbank[0].plot_features()
# %%
cuts_train_fbank_item = cuts_train_fbank[0]
cuts_train_fbank_item
# %%
from lhotse.cut import MonoCut
if isinstance(cuts_train_fbank_item, MonoCut):
print(cuts_train_fbank_item.features)
# %%
cuts_train_fbank_item.plot_audio()
# %%
cuts_train_fbank_item.play_audio()
# %%
from lhotse import CutSet
from lhotse.dataset import (
SimpleCutSampler,
UnsupervisedDataset,
UnsupervisedWaveformDataset,
)
from torch.utils.data import DataLoader, Dataset
dataset = UnsupervisedDataset()
sampler = SimpleCutSampler(cuts_train_fbank, max_duration=300)
dataloader = DataLoader(dataset, sampler=sampler, batch_size=None)
batch = next(iter(dataloader))
batch
# %%
batch["cuts"][0].recording.sources[0].load_audio().shape
# %%
batch["cuts"][0].features
# %%
batch["features"][0].shape
# %%
batch["features"][0]
# %%
# Prepare the LibriTTS dataset
libritts_root = libritts.download_librittsr(
libritts_path,
dataset_parts=["train-clean-100"],
)
libritts_root, libritts_path
# %%
prepared_libri = libritts.prepare_librittsr(
libritts_root / "LibriTTS_R",
# dataset_parts=["dev-clean"],
dataset_parts=["train-clean-100"],
num_jobs=num_jobs,
)
# %%
prepared_libri
# %%
prepared_libri_100 = (
pd.DataFrame(prepared_libri["train-clean-100"]["supervisions"])
.groupby("speaker")["duration"]
.sum()
.sort_values(ascending=False)
)
prepared_libri_100
# %%
for k in prepared_libri:
prepared_libri_ = (
pd.DataFrame(prepared_libri[k]["supervisions"])
.groupby("speaker")["duration"]
.sum()
.sort_values(ascending=False)
)
print(prepared_libri_.loc[prepared_libri_ >= 1800])
# %%
from lhotse import CutSet, SupervisionSet
supervisions_libri = SupervisionSet()
supervisions_libri.to_file(libritts_root / "supervisions_libri.json.gz")
# dev-clean
# Series([], Name: duration, dtype: float64)
# dev-other
# Series([], Name: duration, dtype: float64)
# test-clean
# speaker
# 3570 1865.052667
# Name: duration, dtype: float64
# test-other
# Series([], Name: duration, dtype: float64)
# train-clean-100
# speaker
# 40 2096.569333
# 6209 1926.765000
# 7447 1915.213333
# 1088 1900.926000
# Name: duration, dtype: float64
# train-clean-360
# speaker
# 3003 2385.213333
# 2204 2242.730333
# 3307 2086.246500
# 8080 2051.131500
# 5935 1959.650833
# 3922 1938.523500
# 7982 1893.050833
# 3638 1843.324000
# 3032 1812.692000
# Name: duration, dtype: float64
# train-other-500
# speaker
# 215 2385.047833
# 6594 2341.286667
# 3433 2206.806500
# 3867 2118.326167
# 5733 2097.689833
# 7649 2016.925500
# 2834 2008.083000
# 8291 1977.892000
# 483 1964.766000
# 5181 1959.280000
# 8799 1909.690500
# 7839 1888.650500
# 1665 1877.726833
# 8430 1872.845500
# 47 1861.966167
# 2361 1839.646333
# 1132 1838.686333
# 5439 1837.487000
# 3319 1821.083833
# 5445 1808.444667
# 2208 1804.525833
# 8346 1804.405500
# Name: duration, dtype: float64
selected_speakers_man = [
# train-clean-100
"40",
"1088",
# train-clean-360
"3307",
"5935",
"3032",
# train-other-500
"215",
"6594",
"3867",
"5733",
"8291",
"5181",
"8799",
"2361",
"1132",
"5439",
"3319",
"8346",
]
# %%
num_speakers_lib_100_over_1900_sec = prepared_libri_100.loc[prepared_libri_100 >= 1900]
num_speakers_lib_100_over_1900_sec
# %%
prepared_libri_360 = libritts.prepare_librittsr(
libritts_root / "LibriTTS_R",
# dataset_parts=["dev-clean"],
dataset_parts=["train-clean-360"],
num_jobs=num_jobs,
)
# %%
speaker_durations_360 = (
pd.DataFrame(prepared_libri_360["train-clean-360"]["supervisions"])
.groupby("speaker")["duration"]
.sum()
.sort_values(ascending=False)
)
speaker_durations_360
# %%
# Get the speaker IDs from both dataframes
speaker_ids_100 = prepared_libri_100.index
speaker_ids_360 = speaker_durations_360.index
# Find the intersection of the speaker IDs
common_speaker_ids = speaker_ids_100.intersection(speaker_ids_360)
# No intersection!
common_speaker_ids
# %%
num_speakers_lib_360_over_1900_sec = speaker_durations_360.loc[
speaker_durations_360 > 1900
].count()
num_speakers_lib_360_over_1900_sec
# %%
from lhotse import CutSet, Fbank, FbankConfig
cuts_train = CutSet.from_manifests(**prepared_libri["train-clean-100"]) # type: ignore
cuts_train
# %%
# You can save the prepared CutSet to a file!
cuts_train.to_file("./libri_selected.json.gz")
cuts_train.to_file(root_dir / "./libri_selected.json.gz")
# %%
from lhotse import CutSet, SupervisionSet
libri_selected = CutSet.from_file(root_dir / "libri.json.gz")
libri_selected
# %%
pprint(libri_selected[0])
print(libri_selected[0].recording.sources[0].source)
# %%
libri_selected[0].play_audio()
# %%
import torchaudio
torchaudio.load(
"datasets_cache/librittsr/LibriTTS_R/dev-clean/5694/64025/5694_64025_000017_000002.wav",
)
# %%
supervisions_libri = SupervisionSet.from_file(
root_dir / "supervisions_libri.json.gz",
)
recordings_libri = RecordingSet.from_file(
root_dir / "recordings_libri.json.gz",
)
supervisions_libri, recordings_libri
# %%
supervisions_libri[0]
# %%
speakers_dur = (
pd.DataFrame(supervisions_libri)
.groupby("speaker")["duration"]
.sum()
.sort_values(ascending=False)
)
# %%
speakers_dur_1900 = speakers_dur.loc[speakers_dur >= 1900]
speakers_dur_1900
# %%
# selected_1900_ids = set(
# map(int, speakers_dur_1900.index.to_list()),
# )
selected_1900_ids = set(
speakers_dur_1900.index.to_list(),
)
selected_1900_ids
# %%
duration_limit_min = 0.5
duration_limit_max = 35.0
libri_selected.filter(
lambda cut: isinstance(cut, Cut)
and cut.supervisions[0].speaker in selected_1900_ids
and cut.duration >= duration_limit_min
and cut.duration <= duration_limit_max,
)
# %%
libri_selected[0]
# %%
cuts_train_frame = pd.DataFrame(cuts_train)
cuts_train_frame
# %%
cuts_train[0].supervisions[0].speaker
# %%
# duration_limit_min = 2.0
# duration_limit_max = 2.5
cuts_train = cuts_train.filter(
lambda cut: isinstance(cut, Cut) and cut.supervisions[0].speaker == "5338",
# and cut.duration >= duration_limit_min
# and cut.duration <= duration_limit_max,
)
cuts_train
# %%
# cuts_train.map(lambda cut: cut.supervisions[0].speaker)
# %%
cuts_train[0]
# %%
len(cuts_train)
# %%
selected_speakers_libri_ids = [
# train-clean-100
40,
1088,
# train-clean-360
3307,
5935,
3032,
# train-other-500
215,
6594,
3867,
5733,
8291,
5181,
8799,
2361,
1132,
5439,
3319,
8346,
]
# The selected speakers from the HiFiTTS dataset
selected_speakers_hi_fi_ids = [
92,
6670,
6671,
6097,
8051,
11614,
11697,
9017,
12787,
9136,
]
selected_speakers_ids = {
v: k
for k, v in enumerate(
selected_speakers_libri_ids + selected_speakers_hi_fi_ids,
)
}
selected_speakers_ids[1088]
# %%
selected_speakers_libri_ids = [
# train-clean-100
40,
1088,
# train-clean-360
3307,
5935,
3032,
# train-other-500
215,
6594,
3867,
5733,
8291,
5181,
8799,
2361,
1132,
5439,
3319,
8346,
]
# The selected speakers from the HiFiTTS dataset
selected_speakers_hi_fi_ids = [
"Cori Samuel", # 92,
"Phil Benson", # 6097,
"Mike Pelton", # 6670,
"Tony Oliva", # 6671,
"Maria Kasper", # 8051,
"John Van Stan", # 9017,
"Helen Taylor", # 9136,
"Sylviamb", # 11614,
"Celine Major", # 11697,
"LikeManyWaters", # 12787,
]
# Map the speaker ids to string and list of selected speaker ids to set
selected_speakers_ids = {
v: k
for k, v in enumerate(
selected_speakers_libri_ids + selected_speakers_hi_fi_ids,
)
}
selected_speakers_ids, len(selected_speakers_ids)
# %%
import os
import sys
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.dirname(SCRIPT_DIR))
from pathlib import Path
from IPython import display
import torchaudio
from voicefixer import Vocoder
from .hifi_libri_dataset import HifiLibriDataset, HifiLibriItem
vocoder_vf = Vocoder(44100)
dataset = HifiLibriDataset(cache_dir="datasets_cache", cache=True)
item = dataset[0]
wav = vocoder_vf.forward(item.mel.permute((1, 0)).unsqueeze(0))
display.Audio(wav.squeeze(0).cpu().detach().numpy(), rate=44100)
# wav_path = Path(f"results/{item.id}.wav")
# torchaudio.save(str(wav_path), wav, 44100)
# %%
|