Spaces:
Running
Running
File size: 13,470 Bytes
9d61c9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
from dataclasses import dataclass
from typing import Optional
import librosa
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import nn
import torchaudio.transforms as T
from torchmetrics.audio import (
ComplexScaleInvariantSignalNoiseRatio,
ScaleInvariantSignalDistortionRatio,
ScaleInvariantSignalNoiseRatio,
SpeechReverberationModulationEnergyRatio,
)
from models.config import PreprocessingConfig, PreprocessingConfigUnivNet, get_lang_map
from training.preprocess.audio_processor import AudioProcessor
@dataclass
class MetricsResult:
r"""A data class that holds the results of the computed metrics.
Attributes:
energy (torch.Tensor): The energy loss ratio.
si_sdr (torch.Tensor): The scale-invariant signal-to-distortion ratio.
si_snr (torch.Tensor): The scale-invariant signal-to-noise ratio.
c_si_snr (torch.Tensor): The complex scale-invariant signal-to-noise ratio.
mcd (torch.Tensor): The Mel cepstral distortion.
spec_dist (torch.Tensor): The spectrogram distance.
f0_rmse (float): The F0 RMSE.
jitter (float): The jitter.
shimmer (float): The shimmer.
"""
energy: torch.Tensor
si_sdr: torch.Tensor
si_snr: torch.Tensor
c_si_snr: torch.Tensor
mcd: torch.Tensor
spec_dist: torch.Tensor
f0_rmse: float
jitter: float
shimmer: float
class Metrics:
r"""A class that computes various audio metrics.
Args:
lang (str): language parameter. Defaults to "en".
preprocess_config (Optional[PreprocessingConfig]): The preprocessing configuration. Defaults to None.
Attributes:
hop_length (int): The hop length for the STFT.
filter_length (int): The filter length for the STFT.
mel_fmin (int): The minimum frequency for the Mel scale.
win_length (int): The window length for the STFT.
audio_processor (AudioProcessor): The audio processor.
mse_loss (nn.MSELoss): The mean squared error loss.
si_sdr (ScaleInvariantSignalDistortionRatio): The scale-invariant signal-to-distortion ratio.
si_snr (ScaleInvariantSignalNoiseRatio): The scale-invariant signal-to-noise ratio.
c_si_snr (ComplexScaleInvariantSignalNoiseRatio): The complex scale-invariant signal-to-noise ratio.
"""
def __init__(
self,
lang: str = "en",
preprocess_config: Optional[PreprocessingConfig] = None,
):
lang_map = get_lang_map(lang)
preprocess_config = preprocess_config or PreprocessingConfigUnivNet(
lang_map.processing_lang_type,
)
self.hop_length = preprocess_config.stft.hop_length
self.filter_length = preprocess_config.stft.filter_length
self.mel_fmin = preprocess_config.stft.mel_fmin
self.win_length = preprocess_config.stft.win_length
self.sample_rate = preprocess_config.sampling_rate
self.audio_processor = AudioProcessor()
self.mse_loss = nn.MSELoss()
self.si_sdr = ScaleInvariantSignalDistortionRatio()
self.si_snr = ScaleInvariantSignalNoiseRatio()
self.c_si_snr = ComplexScaleInvariantSignalNoiseRatio(zero_mean=False)
self.reverb_modulation_energy_ratio = SpeechReverberationModulationEnergyRatio(
self.sample_rate,
)
def calculate_mcd(
self,
wav_targets: torch.Tensor,
wav_predictions: torch.Tensor,
n_mfcc: int = 13,
) -> torch.Tensor:
"""Calculate Mel Cepstral Distortion."""
mfcc_transform = T.MFCC(
sample_rate=self.sample_rate,
n_mfcc=n_mfcc,
melkwargs={
"n_fft": 400,
"hop_length": 160,
"n_mels": 23,
"center": False,
},
).to(wav_targets.device)
wav_predictions = wav_predictions.to(wav_targets.device)
ref_mfcc = mfcc_transform(wav_targets)
synth_mfcc = mfcc_transform(wav_predictions)
mcd = torch.mean(
torch.sqrt(
torch.sum((ref_mfcc - synth_mfcc) ** 2, dim=0),
),
)
return mcd
def calculate_spectrogram_distance(
self,
wav_targets: torch.Tensor,
wav_predictions: torch.Tensor,
n_fft: int = 2048,
hop_length: int = 512,
) -> torch.Tensor:
"""Calculate spectrogram distance."""
spec_transform = T.Spectrogram(
n_fft=n_fft,
hop_length=hop_length,
power=None,
).to(wav_targets.device)
wav_predictions = wav_predictions.to(wav_targets.device)
# Compute the spectrograms
S1 = spec_transform(wav_targets)
S2 = spec_transform(wav_predictions)
# Compute the magnitude spectrograms
S1_mag = torch.abs(S1)
S2_mag = torch.abs(S2)
# Compute the Euclidean distance
dist = torch.dist(S1_mag.flatten(), S2_mag.flatten())
return dist
def calculate_f0_rmse(
self,
wav_targets: torch.Tensor,
wav_predictions: torch.Tensor,
frame_length: int = 2048,
hop_length: int = 512,
) -> float:
"""Calculate F0 RMSE."""
wav_targets_ = wav_targets.detach().cpu().numpy()
wav_predictions_ = wav_predictions.detach().cpu().numpy()
# Compute the F0 contour for each audio signal
f0_audio1 = torch.from_numpy(
librosa.yin(
wav_targets_,
fmin=float(librosa.note_to_hz("C2")),
fmax=float(librosa.note_to_hz("C7")),
sr=self.sample_rate,
frame_length=frame_length,
hop_length=hop_length,
),
)
f0_audio2 = torch.from_numpy(
librosa.yin(
wav_predictions_,
fmin=float(librosa.note_to_hz("C2")),
fmax=float(librosa.note_to_hz("C7")),
sr=self.sample_rate,
frame_length=frame_length,
hop_length=hop_length,
),
)
# Assuming f0_audio1 and f0_audio2 are PyTorch tensors
rmse = torch.sqrt(torch.mean((f0_audio1 - f0_audio2) ** 2)).item()
return rmse
def calculate_jitter_shimmer(
self,
audio: torch.Tensor,
) -> tuple[float, float]:
r"""Calculate jitter and shimmer of an audio signal.
Jitter and shimmer are two metrics used in speech signal processing to measure the quality of voice signals.
Jitter refers to the short-term variability of a signal's fundamental frequency (F0). It is often used as an indicator of voice disorders, as high levels of jitter can indicate a lack of control over the vocal folds.
Shimmer, on the other hand, refers to the short-term variability in amplitude of the voice signal. Like jitter, high levels of shimmer can be indicative of voice disorders, as they can suggest a lack of control over the vocal tract.
Summary:
Jitter is the short-term variability of a signal's fundamental frequency (F0).
Shimmer is the short-term variability in amplitude of the voice signal.
Args:
audio (torch.Tensor): The audio signal to analyze.
Returns:
tuple[float, float]: The calculated jitter and shimmer values.
"""
# Create a transformation to calculate the spectrogram
spectrogram = T.Spectrogram(
n_fft=self.filter_length * 2,
hop_length=self.hop_length * 2,
power=None,
)
spectrogram = spectrogram.to(audio.device)
# Calculate the spectrogram of the audio signal
amplitude = spectrogram(audio)
# Calculate the F0 contour using the yin method
f0 = T.Vad(sample_rate=self.sample_rate)(audio)
# Episilon to avoid division by zero
epsilon = 1e-10
# Calculate the relative changes in the F0 and amplitude contours
jitter = torch.mean(
torch.abs(torch.diff(f0, dim=-1)) / (torch.diff(f0, dim=-1) + epsilon),
).item()
shimmer = torch.mean(
torch.abs(torch.diff(amplitude, dim=-1))
/ (torch.diff(amplitude, dim=-1) + epsilon),
)
shimmer = torch.abs(shimmer).item()
return jitter, shimmer
def wav_metrics(self, wav_predictions: torch.Tensor):
r"""Compute the metrics for the waveforms.
Args:
wav_predictions (torch.Tensor): The predicted waveforms.
Returns:
tuple[float, float, float]: The computed metrics.
"""
ermr = self.reverb_modulation_energy_ratio(wav_predictions).item()
jitter, shimmer = self.calculate_jitter_shimmer(wav_predictions)
return (
ermr,
jitter,
shimmer,
)
def __call__(
self,
wav_predictions: torch.Tensor,
wav_targets: torch.Tensor,
mel_predictions: torch.Tensor,
mel_targets: torch.Tensor,
) -> MetricsResult:
r"""Compute the metrics.
Args:
wav_predictions (torch.Tensor): The predicted waveforms.
wav_targets (torch.Tensor): The target waveforms.
mel_predictions (torch.Tensor): The predicted Mel spectrograms.
mel_targets (torch.Tensor): The target Mel spectrograms.
Returns:
MetricsResult: The computed metrics.
"""
wav_predictions_energy = self.audio_processor.wav_to_energy(
wav_predictions.unsqueeze(0),
self.filter_length,
self.hop_length,
self.win_length,
)
wav_targets_energy = self.audio_processor.wav_to_energy(
wav_targets.unsqueeze(0),
self.filter_length,
self.hop_length,
self.win_length,
)
energy: torch.Tensor = self.mse_loss(wav_predictions_energy, wav_targets_energy)
self.si_sdr.to(wav_predictions.device)
self.si_snr.to(wav_predictions.device)
self.c_si_snr.to(wav_predictions.device)
# New Metrics
si_sdr: torch.Tensor = self.si_sdr(mel_predictions, mel_targets)
si_snr: torch.Tensor = self.si_snr(mel_predictions, mel_targets)
# New shape: [1, F, T, 2]
mel_predictions_complex = torch.stack(
(mel_predictions, torch.zeros_like(mel_predictions)),
dim=-1,
)
mel_targets_complex = torch.stack(
(mel_targets, torch.zeros_like(mel_targets)),
dim=-1,
)
c_si_snr: torch.Tensor = self.c_si_snr(
mel_predictions_complex,
mel_targets_complex,
)
mcd = self.calculate_mcd(wav_targets, wav_predictions)
spec_dist = self.calculate_spectrogram_distance(wav_targets, wav_predictions)
f0_rmse = self.calculate_f0_rmse(wav_targets, wav_predictions)
jitter, shimmer = self.calculate_jitter_shimmer(wav_predictions)
return MetricsResult(
energy,
si_sdr,
si_snr,
c_si_snr,
mcd,
spec_dist,
f0_rmse,
jitter,
shimmer,
)
def plot_spectrograms(
self,
mel_target: np.ndarray,
mel_prediction: np.ndarray,
sr: int = 22050,
):
r"""Plots the mel spectrograms for the target and the prediction."""
fig, axs = plt.subplots(2, 1, sharex=True, sharey=True, dpi=80)
img1 = librosa.display.specshow(
mel_target,
x_axis="time",
y_axis="mel",
sr=sr,
ax=axs[0],
)
axs[0].set_title("Target spectrogram")
fig.colorbar(img1, ax=axs[0], format="%+2.0f dB")
img2 = librosa.display.specshow(
mel_prediction,
x_axis="time",
y_axis="mel",
sr=sr,
ax=axs[1],
)
axs[1].set_title("Prediction spectrogram")
fig.colorbar(img2, ax=axs[1], format="%+2.0f dB")
# Adjust the spacing between subplots
fig.subplots_adjust(hspace=0.5)
return fig
def plot_spectrograms_fast(
self,
mel_target: np.ndarray,
mel_prediction: np.ndarray,
sr: int = 22050,
):
r"""Plots the mel spectrograms for the target and the prediction."""
fig, axs = plt.subplots(2, 1, sharex=True, sharey=True)
axs[0].specgram(
mel_target,
aspect="auto",
Fs=sr,
cmap=plt.get_cmap("magma"), # type: ignore
)
axs[0].set_title("Target spectrogram")
axs[1].specgram(
mel_prediction,
aspect="auto",
Fs=sr,
cmap=plt.get_cmap("magma"), # type: ignore
)
axs[1].set_title("Prediction spectrogram")
# Adjust the spacing between subplots
fig.subplots_adjust(hspace=0.5)
return fig
|