File size: 9,779 Bytes
9d61c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from typing import Literal, Optional, Tuple, Union

import librosa
import torch
from torch import Tensor, nn
from torch.nn import functional


class TorchSTFT(nn.Module):
    r"""Some of the audio processing funtions using Torch for faster batch processing.

    Args:
        n_fft (int): FFT window size for STFT.
        hop_length (int): number of frames between STFT columns.
        win_length (int, optional): STFT window length.
        pad_wav (bool, optional): If True pad the audio with (n_fft - hop_length) / 2). Defaults to False.
        window (str, optional): The name of a function to create a window tensor that is applied/multiplied to each frame/window. Defaults to "hann_window"
        sample_rate (int, optional): target audio sampling rate. Defaults to None.
        mel_fmin (int, optional): minimum filter frequency for computing melspectrograms. Defaults to None.
        mel_fmax (int, optional): maximum filter frequency for computing melspectrograms. Defaults to None.
        n_mels (int, optional): number of melspectrogram dimensions. Defaults to None.
        use_mel (bool, optional): If True compute the melspectrograms otherwise. Defaults to False.
        do_amp_to_db_linear (bool, optional): enable/disable amplitude to dB conversion of linear spectrograms. Defaults to False.
        spec_gain (float, optional): gain applied when converting amplitude to DB. Defaults to 1.0.
        power (float, optional): Exponent for the magnitude spectrogram, e.g., 1 for energy, 2 for power, etc.  Defaults to None.
        use_htk (bool, optional): Use HTK formula in mel filter instead of Slaney.
        mel_norm (None, 'slaney', or number, optional): If 'slaney', divide the triangular mel weights by the width of the mel band (area normalization).

        If numeric, use `librosa.util.normalize` to normalize each filter by to unit l_p norm.
        See `librosa.util.normalize` for a full description of supported norm values (including `+-np.inf`).
        Otherwise, leave all the triangles aiming for a peak value of 1.0. Defaults to "slaney".
    """

    def __init__(
        self,
        n_fft: int,
        hop_length: int,
        win_length: int,
        pad_wav: bool = False,
        window: str = "hann_window",
        sample_rate: int = 22050,
        mel_fmin: int = 0,
        mel_fmax: Optional[int] = None,
        n_mels: int = 80,
        use_mel: bool = False,
        do_amp_to_db:bool = False,
        spec_gain: float = 1.0,
        power: Optional[float] = None,
        use_htk: bool = False,
        mel_norm: Optional[Union[Literal["slaney"], float]] = "slaney",
        normalized: bool = False,
    ):
        super().__init__()
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.win_length = win_length
        self.pad_wav = pad_wav
        self.sample_rate = sample_rate
        self.mel_fmin = mel_fmin
        self.mel_fmax = mel_fmax
        self.n_mels = n_mels
        self.use_mel = use_mel
        self.do_amp_to_db = do_amp_to_db
        self.spec_gain = spec_gain
        self.power = power
        self.use_htk = use_htk
        self.window = nn.Parameter(getattr(torch, window)(win_length), requires_grad=False)
        self.normalized = normalized

        self.mel_norm: Optional[Union[Literal["slaney"], float]] = mel_norm
        self.mel_basis = None

        if use_mel:
            self._build_mel_basis()

    def __call__(self, x: Tensor):
        """Compute spectrogram frames by torch based stft.

        Args:
            x (Tensor): input waveform

        Returns:
            Tensor: spectrogram frames.

        Shapes:
            x: [B x T] or [:math:`[B, 1, T]`]
        """
        if x.ndim == 2:
            x = x.unsqueeze(1)

        if self.pad_wav:
            padding = int((self.n_fft - self.hop_length) / 2)
            x = torch.nn.functional.pad(x, (padding, padding), mode="reflect")

        # B x D x T x 2
        o = torch.stft(
            x.squeeze(1),
            self.n_fft,
            self.hop_length,
            self.win_length,
            self.window,
            center=True,
            pad_mode="reflect",  # compatible with audio.py
            normalized=self.normalized,
            onesided=True,
            return_complex=False,
        )

        M = o[:, :, :, 0]
        P = o[:, :, :, 1]

        S = torch.sqrt(torch.clamp(M**2 + P**2, min=1e-8))

        if self.power is not None:
            S = S**self.power

        if self.use_mel and self.mel_basis is not None:
            S = torch.matmul(self.mel_basis.to(x), S)

        if self.do_amp_to_db:
            S = self._amp_to_db(S, spec_gain=self.spec_gain)

        return S

    def _build_mel_basis(self):
        r"""Builds the mel basis for the spectrogram transformation.
        This method is called during initialization if use_mel is set to True.
        """
        mel_basis = librosa.filters.mel(
            sr=self.sample_rate,
            n_fft=self.n_fft,
            n_mels=self.n_mels,
            fmin=self.mel_fmin,
            fmax=self.mel_fmax,
            htk=self.use_htk,
            norm=self.mel_norm,
        )
        self.mel_basis = torch.from_numpy(mel_basis).float()

    @staticmethod
    def _amp_to_db(x: Tensor, spec_gain: float = 1.0) -> Tensor:
        r"""Converts amplitude to decibels.

        Args:
        x (Tensor): The amplitude tensor to convert.
        spec_gain (float, optional): The gain applied when converting. Defaults to 1.0.

        Returns:
        Tensor: The converted tensor in decibels.
        """
        return torch.log(torch.clamp(x, min=1e-5) * spec_gain)

    @staticmethod
    def _db_to_amp(x: Tensor, spec_gain: float = 1.0) -> Tensor:
        r"""Converts decibels to amplitude.

        Args:
        x (Tensor): The decibel tensor to convert.
        spec_gain (float, optional): The gain applied when converting. Defaults to 1.0.

        Returns:
        Tensor: The converted tensor in amplitude.
        """
        return torch.exp(x) / spec_gain


class STFTLoss(nn.Module):
    r"""STFT loss. Input generate and real waveforms are converted
    to spectrograms compared with L1 and Spectral convergence losses.
    It is from ParallelWaveGAN paper https://arxiv.org/pdf/1910.11480.pdf

    Attributes:
        n_fft (int): The FFT size.
        hop_length (int): The hop (stride) size.
        win_length (int): The window size.
        stft (TorchSTFT): The STFT function.

    Methods:
        forward(y_hat: Tensor, y: Tensor)
            Compute the STFT loss.
    """

    def __init__(self, n_fft: int, hop_length: int, win_length: int):
        r"""Constructs all the necessary attributes for the STFTLoss object.

        Args:
            n_fft (int): The FFT size.
            hop_length (int): The hop (stride) size.
            win_length (int): The window size.
        """
        super().__init__()
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.win_length = win_length
        self.stft = TorchSTFT(n_fft, hop_length, win_length)

    def forward(self, y_hat: Tensor, y: Tensor):
        r"""Compute the STFT loss.

        Args:
            y_hat (Tensor): The generated waveforms.
            y (Tensor): The real waveforms.

        Returns:
            loss_mag (Tensor): The magnitude loss.
            loss_sc (Tensor): The spectral convergence loss.
        """
        y_hat_M = self.stft(y_hat)
        y_M = self.stft(y)

        # magnitude loss
        loss_mag = functional.l1_loss(torch.log(y_M), torch.log(y_hat_M))

        # spectral convergence loss
        loss_sc = torch.norm(y_M - y_hat_M, p="fro") / torch.norm(y_M, p="fro")
        return loss_mag, loss_sc


class MultiScaleSTFTLoss(nn.Module):
    """Multi-scale STFT loss. Input generate and real waveforms are converted
    to spectrograms compared with L1 and Spectral convergence losses.
    It is from ParallelWaveGAN paper https://arxiv.org/pdf/1910.11480.pdf

    Attributes:
        loss_funcs (torch.nn.ModuleList): A list of STFTLoss modules for different scales.

    Methods:
        forward(y_hat: Tensor, y: Tensor) -> Tuple[Tensor, Tensor]
            Compute the multi-scale STFT loss.
    """

    def __init__(
            self,
            n_ffts: Tuple[int, int, int] = (1024, 2048, 512),
            hop_lengths: Tuple[int, int, int] = (120, 240, 50),
            win_lengths: Tuple[int, int, int] = (600, 1200, 240),
    ):
        r"""Initialize the MultiScaleSTFTLoss module.

        Args:
            n_ffts (Tuple[int, int, int], optional): The FFT sizes for the STFTLoss modules. Defaults to (1024, 2048, 512).
            hop_lengths (Tuple[int, int, int], optional): The hop lengths for the STFTLoss modules. Defaults to (120, 240, 50).
            win_lengths (Tuple[int, int, int], optional): The window lengths for the STFTLoss modules. Defaults to (600, 1200, 240).
        """
        super().__init__()
        self.loss_funcs = torch.nn.ModuleList()
        for n_fft, hop_length, win_length in zip(n_ffts, hop_lengths, win_lengths):
            self.loss_funcs.append(STFTLoss(n_fft, hop_length, win_length))

    def forward(self, y_hat: Tensor, y: Tensor):
        r"""Compute the multi-scale STFT loss.

        Args:
            y_hat (Tensor): The generated waveforms.
            y (Tensor): The real waveforms.

        Returns:
            Tuple[Tensor, Tensor]: The magnitude and spectral convergence losses.
        """
        N = len(self.loss_funcs)
        loss_sc = 0
        loss_mag = 0
        for f in self.loss_funcs:
            lm, lsc = f(y_hat, y)
            loss_mag += lm
            loss_sc += lsc
        loss_sc /= N
        loss_mag /= N
        return loss_mag, loss_sc