File size: 6,542 Bytes
9d61c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import unittest

import torch

from models.config import PreprocessingConfigUnivNet, get_lang_map
from training.preprocess import PreprocessLibriTTS
from training.preprocess.preprocess_libritts import PreprocessForAcousticResult


class TestPreprocessLibriTTS(unittest.TestCase):
    def setUp(self):
        torch.random.manual_seed(42)
        lang_map = get_lang_map("en")
        processing_lang_type = lang_map.processing_lang_type
        self.preprocess_libritts = PreprocessLibriTTS(
            PreprocessingConfigUnivNet(processing_lang_type),
        )

    def test_acoustic(self):
        # Set the sampling rate and duration of the audio signal
        sr_actual = 44100
        duration = 1.0

        # Set the frequency of the pitch (in Hz)
        pitch_freq = 440.0

        # Generate a time vector for the audio signal
        t = torch.linspace(0, duration, int(sr_actual * duration))

        # Generate a sinusoidal waveform with the specified pitch frequency
        audio = torch.sin(2 * torch.pi * pitch_freq * t)

        audio = audio.unsqueeze(0)

        raw_text = "Hello, world!"

        output = self.preprocess_libritts.acoustic(
            (audio, sr_actual, raw_text, raw_text, 0, 0, "0"),
        )

        self.assertIsNotNone(output)

        if output is not None:
            self.assertIsInstance(output, PreprocessForAcousticResult)

            self.assertIsInstance(output.wav, torch.Tensor)
            self.assertIsInstance(output.mel, torch.Tensor)
            self.assertIsInstance(output.pitch, torch.Tensor)
            self.assertIsInstance(output.phones, torch.Tensor)
            self.assertIsInstance(output.raw_text, str)
            self.assertIsInstance(output.pitch_is_normalized, bool)

            self.assertEqual(output.wav.shape, torch.Size([22050]))
            self.assertEqual(output.mel.shape, torch.Size([100, 86]))
            self.assertEqual(output.pitch.shape, torch.Size([86]))

            torch.testing.assert_close(
                output.phones,
                torch.tensor(
                    [
                        2.0,
                        10.0,
                        37.0,
                        14.0,
                        50.0,
                        17.0,
                        45.0,
                        62.0,
                        71.0,
                        24.0,
                        50.0,
                        118.0,
                        52.0,
                        14.0,
                        6.0,
                        60.0,
                        71.0,
                        3.0,
                    ],
                ),
            )

            self.assertEqual(output.raw_text, "Hello, world!")
            self.assertFalse(output.pitch_is_normalized)

    def test_acoustic_with_short_audio(self):
        audio = torch.randn(1, 22050)
        sr_actual = 22050
        raw_text = "Hello, world!"
        output = self.preprocess_libritts.acoustic(
            (audio, sr_actual, raw_text, raw_text, 0, 0, "0"),
        )

        self.assertIsNone(output)

    def test_acoustic_with_complicated_text(self):
        # Set the sampling rate and duration of the audio signal
        sr_actual = 44100
        duration = 10.0

        # Set the frequency of the pitch (in Hz)
        pitch_freq = 440.0

        # Generate a time vector for the audio signal
        t = torch.linspace(0, duration, int(sr_actual * duration))

        # Generate a sinusoidal waveform with the specified pitch frequency
        audio = torch.sin(2 * torch.pi * pitch_freq * t).unsqueeze(0)

        raw_text = r"""Hello, world! Wow!!!!! This is amazing?????
        It’s a beautiful day…
        Mr. Smith paid $111 in U.S.A. on Dec. 17th. We paid $123 for this desk."""

        output = self.preprocess_libritts.acoustic(
            (audio, sr_actual, raw_text, raw_text, 0, 0, "0"),
        )

        self.assertIsNotNone(output)

        if output is not None:
            self.assertEqual(output.attn_prior.shape, torch.Size([226, 861]))
            self.assertEqual(output.mel.shape, torch.Size([100, 861]))

            self.assertEqual(
                output.normalized_text,
                "Hello, world! Wow! This is amazing?. It's a beautiful day.. mister Smith paid one hundred and eleven dollars in USA on december seventeenth. We paid one hundred and twenty three dollars for this desk.",
            )

            self.assertEqual(output.phones.shape, torch.Size([226]))
            self.assertEqual(len(output.phones_ipa), 224)

            self.assertEqual(output.wav.shape, torch.Size([220500]))

    def test_acoustic_with_long_audio(self):
        audio = torch.randn(1, 88200)
        sr_actual = 44100
        raw_text = "Hello, world!"
        output = self.preprocess_libritts.acoustic(
            (audio, sr_actual, raw_text, raw_text, 0, 0, "0"),
        )

        self.assertIsNone(output)

    def test_beta_binomial_prior_distribution(self):
        phoneme_count = 10
        mel_count = 20
        prior_dist = self.preprocess_libritts.beta_binomial_prior_distribution(
            phoneme_count,
            mel_count,
        )
        self.assertIsInstance(prior_dist, torch.Tensor)
        self.assertEqual(prior_dist.shape, (mel_count, phoneme_count))

    def test_preprocess_univnet(self):
        # Set the sampling rate and duration of the audio signal
        sr_actual = 44100
        duration = 10.0

        # Set the frequency of the pitch (in Hz)
        pitch_freq = 440.0

        # Generate a time vector for the audio signal
        t = torch.linspace(0, duration, int(sr_actual * duration))

        # Generate a sinusoidal waveform with the specified pitch frequency
        audio = torch.sin(2 * torch.pi * pitch_freq * t).unsqueeze(0)

        speaker_id = 10

        output = self.preprocess_libritts.univnet(
            (audio, sr_actual, "", "", speaker_id, 0, ""),
        )

        self.assertIsNotNone(output)

        if output is not None:
            self.assertIsInstance(output, tuple)
            self.assertEqual(len(output), 3)

            mel, audio_segment, speaker_id_output = output

            self.assertIsInstance(mel, torch.Tensor)
            self.assertIsInstance(audio_segment, torch.Tensor)
            self.assertIsInstance(speaker_id_output, int)

            self.assertEqual(mel.shape, torch.Size([100, 64]))
            self.assertEqual(speaker_id_output, speaker_id)


if __name__ == "__main__":
    unittest.main()