Spaces:
Sleeping
Sleeping
File size: 6,542 Bytes
9d61c9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import unittest
import torch
from models.config import PreprocessingConfigUnivNet, get_lang_map
from training.preprocess import PreprocessLibriTTS
from training.preprocess.preprocess_libritts import PreprocessForAcousticResult
class TestPreprocessLibriTTS(unittest.TestCase):
def setUp(self):
torch.random.manual_seed(42)
lang_map = get_lang_map("en")
processing_lang_type = lang_map.processing_lang_type
self.preprocess_libritts = PreprocessLibriTTS(
PreprocessingConfigUnivNet(processing_lang_type),
)
def test_acoustic(self):
# Set the sampling rate and duration of the audio signal
sr_actual = 44100
duration = 1.0
# Set the frequency of the pitch (in Hz)
pitch_freq = 440.0
# Generate a time vector for the audio signal
t = torch.linspace(0, duration, int(sr_actual * duration))
# Generate a sinusoidal waveform with the specified pitch frequency
audio = torch.sin(2 * torch.pi * pitch_freq * t)
audio = audio.unsqueeze(0)
raw_text = "Hello, world!"
output = self.preprocess_libritts.acoustic(
(audio, sr_actual, raw_text, raw_text, 0, 0, "0"),
)
self.assertIsNotNone(output)
if output is not None:
self.assertIsInstance(output, PreprocessForAcousticResult)
self.assertIsInstance(output.wav, torch.Tensor)
self.assertIsInstance(output.mel, torch.Tensor)
self.assertIsInstance(output.pitch, torch.Tensor)
self.assertIsInstance(output.phones, torch.Tensor)
self.assertIsInstance(output.raw_text, str)
self.assertIsInstance(output.pitch_is_normalized, bool)
self.assertEqual(output.wav.shape, torch.Size([22050]))
self.assertEqual(output.mel.shape, torch.Size([100, 86]))
self.assertEqual(output.pitch.shape, torch.Size([86]))
torch.testing.assert_close(
output.phones,
torch.tensor(
[
2.0,
10.0,
37.0,
14.0,
50.0,
17.0,
45.0,
62.0,
71.0,
24.0,
50.0,
118.0,
52.0,
14.0,
6.0,
60.0,
71.0,
3.0,
],
),
)
self.assertEqual(output.raw_text, "Hello, world!")
self.assertFalse(output.pitch_is_normalized)
def test_acoustic_with_short_audio(self):
audio = torch.randn(1, 22050)
sr_actual = 22050
raw_text = "Hello, world!"
output = self.preprocess_libritts.acoustic(
(audio, sr_actual, raw_text, raw_text, 0, 0, "0"),
)
self.assertIsNone(output)
def test_acoustic_with_complicated_text(self):
# Set the sampling rate and duration of the audio signal
sr_actual = 44100
duration = 10.0
# Set the frequency of the pitch (in Hz)
pitch_freq = 440.0
# Generate a time vector for the audio signal
t = torch.linspace(0, duration, int(sr_actual * duration))
# Generate a sinusoidal waveform with the specified pitch frequency
audio = torch.sin(2 * torch.pi * pitch_freq * t).unsqueeze(0)
raw_text = r"""Hello, world! Wow!!!!! This is amazing?????
It’s a beautiful day…
Mr. Smith paid $111 in U.S.A. on Dec. 17th. We paid $123 for this desk."""
output = self.preprocess_libritts.acoustic(
(audio, sr_actual, raw_text, raw_text, 0, 0, "0"),
)
self.assertIsNotNone(output)
if output is not None:
self.assertEqual(output.attn_prior.shape, torch.Size([226, 861]))
self.assertEqual(output.mel.shape, torch.Size([100, 861]))
self.assertEqual(
output.normalized_text,
"Hello, world! Wow! This is amazing?. It's a beautiful day.. mister Smith paid one hundred and eleven dollars in USA on december seventeenth. We paid one hundred and twenty three dollars for this desk.",
)
self.assertEqual(output.phones.shape, torch.Size([226]))
self.assertEqual(len(output.phones_ipa), 224)
self.assertEqual(output.wav.shape, torch.Size([220500]))
def test_acoustic_with_long_audio(self):
audio = torch.randn(1, 88200)
sr_actual = 44100
raw_text = "Hello, world!"
output = self.preprocess_libritts.acoustic(
(audio, sr_actual, raw_text, raw_text, 0, 0, "0"),
)
self.assertIsNone(output)
def test_beta_binomial_prior_distribution(self):
phoneme_count = 10
mel_count = 20
prior_dist = self.preprocess_libritts.beta_binomial_prior_distribution(
phoneme_count,
mel_count,
)
self.assertIsInstance(prior_dist, torch.Tensor)
self.assertEqual(prior_dist.shape, (mel_count, phoneme_count))
def test_preprocess_univnet(self):
# Set the sampling rate and duration of the audio signal
sr_actual = 44100
duration = 10.0
# Set the frequency of the pitch (in Hz)
pitch_freq = 440.0
# Generate a time vector for the audio signal
t = torch.linspace(0, duration, int(sr_actual * duration))
# Generate a sinusoidal waveform with the specified pitch frequency
audio = torch.sin(2 * torch.pi * pitch_freq * t).unsqueeze(0)
speaker_id = 10
output = self.preprocess_libritts.univnet(
(audio, sr_actual, "", "", speaker_id, 0, ""),
)
self.assertIsNotNone(output)
if output is not None:
self.assertIsInstance(output, tuple)
self.assertEqual(len(output), 3)
mel, audio_segment, speaker_id_output = output
self.assertIsInstance(mel, torch.Tensor)
self.assertIsInstance(audio_segment, torch.Tensor)
self.assertIsInstance(speaker_id_output, int)
self.assertEqual(mel.shape, torch.Size([100, 64]))
self.assertEqual(speaker_id_output, speaker_id)
if __name__ == "__main__":
unittest.main()
|