PeechTTSv22050 / training /loss /delightful_tts_loss.py
nickovchinnikov's picture
Init
9d61c9b
raw
history blame
12.1 kB
from typing import Optional
from piq import SSIMLoss
import torch
from torch import Tensor, nn
from torch.nn import functional
from models.config import AcousticModelConfigType
from training.loss.utils import sample_wise_min_max
# from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1
def sequence_mask(sequence_length: Tensor, max_len: Optional[int] = None) -> Tensor:
"""Create a sequence mask for filtering padding in a sequence tensor.
Args:
sequence_length (torch.tensor): Sequence lengths.
max_len (int, Optional): Maximum sequence length. Defaults to None.
Shapes:
- mask: :math:`[B, T_max]`
"""
max_len_ = max_len if max_len is not None else sequence_length.max().item()
seq_range = torch.arange(max_len_, dtype=sequence_length.dtype, device=sequence_length.device)
# B x T_max
return seq_range.unsqueeze(0) < sequence_length.unsqueeze(1)
class ForwardSumLoss(nn.Module):
r"""A class used to compute the forward sum loss.
Attributes:
log_softmax (torch.nn.LogSoftmax): The log softmax function applied along dimension 3.
ctc_loss (torch.nn.CTCLoss): The CTC loss function with zero infinity set to True.
blank_logprob (int): The log probability of a blank, default is -1.
Methods:
forward(attn_logprob: Tensor, in_lens: Tensor, out_lens: Tensor)
Compute the forward sum loss.
"""
def __init__(self, blank_logprob: int = -1):
r"""Constructs all the necessary attributes for the ForwardSumLoss object.
Args:
blank_logprob (int, optional): The log probability of a blank (default is -1).
"""
super().__init__()
self.log_softmax = torch.nn.LogSoftmax(dim=3)
self.ctc_loss = torch.nn.CTCLoss(zero_infinity=True)
self.blank_logprob = blank_logprob
def forward(self, attn_logprob: Tensor, in_lens: Tensor, out_lens: Tensor):
r"""Compute the forward sum loss.
Args:
attn_logprob (Tensor): The attention log probabilities.
in_lens (Tensor): The input lengths.
out_lens (Tensor): The output lengths.
Returns:
total_loss (float): The total loss computed.
"""
key_lens = in_lens
query_lens = out_lens
attn_logprob_padded = functional.pad(input=attn_logprob, pad=(1, 0), value=self.blank_logprob)
total_loss = 0.0
for bid in range(attn_logprob.shape[0]):
target_seq = torch.arange(1, key_lens[bid].item() + 1).unsqueeze(0)
curr_logprob = attn_logprob_padded[bid].permute(1, 0, 2)[: query_lens[bid], :, : key_lens[bid] + 1]
curr_logprob = self.log_softmax(curr_logprob[None])[0]
loss = self.ctc_loss(
curr_logprob,
target_seq,
input_lengths=query_lens[bid : bid + 1],
target_lengths=key_lens[bid : bid + 1],
)
total_loss = total_loss + loss
total_loss = total_loss / attn_logprob.shape[0]
return total_loss
class DelightfulTTSLoss(nn.Module):
r"""A class used to compute the delightful TTS loss.
Attributes:
mse_loss (nn.MSELoss): The mean squared error loss function.
mae_loss (nn.L1Loss): The mean absolute error loss function.
forward_sum_loss (ForwardSumLoss): The forward sum loss function.
mel_loss_alpha (float): The weight for the mel loss.
aligner_loss_alpha (float): The weight for the aligner loss.
pitch_loss_alpha (float): The weight for the pitch loss.
energy_loss_alpha (float): The weight for the energy loss.
u_prosody_loss_alpha (float): The weight for the u prosody loss.
p_prosody_loss_alpha (float): The weight for the p prosody loss.
dur_loss_alpha (float): The weight for the duration loss.
binary_alignment_loss_alpha (float): The weight for the binary alignment loss.
Methods:
_binary_alignment_loss(alignment_hard: Tensor, alignment_soft: Tensor)
Compute the binary alignment loss.
forward(
mel_output: Tensor,
mel_target: Tensor,
mel_lens: Tensor,
dur_output: Tensor,
dur_target: Tensor,
pitch_output: Tensor,
pitch_target: Tensor,
energy_output: Tensor,
energy_target: Tensor,
src_lens: Tensor,
p_prosody_ref: Tensor,
p_prosody_pred: Tensor,
u_prosody_ref: Tensor,
u_prosody_pred: Tensor,
aligner_logprob: Tensor,
aligner_hard: Tensor,
aligner_soft: Tensor,
binary_loss_weight: Optional[Tensor] = None,
)
Compute the delightful TTS loss.
"""
def __init__(self, config: AcousticModelConfigType):
r"""Constructs all the necessary attributes for the DelightfulTTSLoss object.
Args:
config (AcousticModelConfigType): Configuration parameters for the loss function.
"""
super().__init__()
self.mse_loss = nn.MSELoss()
self.mae_loss = nn.L1Loss()
self.forward_sum_loss = ForwardSumLoss()
self.ssim_loss = SSIMLoss()
self.mel_loss_alpha = config.loss.mel_loss_alpha
self.ssim_loss_alpha = config.loss.ssim_loss_alpha
self.aligner_loss_alpha = config.loss.aligner_loss_alpha
self.pitch_loss_alpha = config.loss.pitch_loss_alpha
self.energy_loss_alpha = config.loss.energy_loss_alpha
self.u_prosody_loss_alpha = config.loss.u_prosody_loss_alpha
self.p_prosody_loss_alpha = config.loss.p_prosody_loss_alpha
self.dur_loss_alpha = config.loss.dur_loss_alpha
self.binary_alignment_loss_alpha = config.loss.binary_align_loss_alpha
@staticmethod
def _binary_alignment_loss(alignment_hard: Tensor, alignment_soft: Tensor) -> Tensor:
"""Binary loss that forces soft alignments to match the hard alignments as
explained in `https://arxiv.org/pdf/2108.10447.pdf`.
Args:
alignment_hard (Tensor): The hard alignment tensor.
alignment_soft (Tensor): The soft alignment tensor.
Returns:
loss (float): The computed binary alignment loss.
"""
log_sum = torch.log(torch.clamp(alignment_soft[alignment_hard == 1], min=1e-12)).sum()
return -log_sum / alignment_hard.sum()
def forward(
self,
mel_output: Tensor,
mel_target: Tensor,
mel_lens: Tensor,
dur_output: Tensor,
dur_target: Tensor,
pitch_output: Tensor,
pitch_target: Tensor,
energy_output: Tensor,
energy_target: Tensor,
src_lens: Tensor,
p_prosody_ref: Tensor,
p_prosody_pred: Tensor,
u_prosody_ref: Tensor,
u_prosody_pred: Tensor,
aligner_logprob: Tensor,
aligner_hard: Tensor,
aligner_soft: Tensor,
):
r"""Compute the delightful TTS loss.
Args:
mel_output (Tensor): The mel output tensor.
mel_target (Tensor): The mel target tensor.
mel_lens (Tensor): The mel lengths tensor.
dur_output (Tensor): The duration output tensor.
dur_target (Tensor): The duration target tensor.
pitch_output (Tensor): The pitch output tensor.
pitch_target (Tensor): The pitch target tensor.
energy_output (Tensor): The energy output tensor.
energy_target (Tensor): The energy target tensor.
src_lens (Tensor): The source lengths tensor.
p_prosody_ref (Tensor): The p prosody reference tensor.
p_prosody_pred (Tensor): The p prosody prediction tensor.
u_prosody_ref (Tensor): The u prosody reference tensor.
u_prosody_pred (Tensor): The u prosody prediction tensor.
aligner_logprob (Tensor): The aligner log probabilities tensor.
aligner_hard (Tensor): The hard aligner tensor.
aligner_soft (Tensor): The soft aligner tensor.
Returns:
loss_dict (Tupple): A dictionary containing all the loss values.
Shapes:
- mel_output: :math:`(B, C_mel, T_mel)`
- mel_target: :math:`(B, C_mel, T_mel)`
- mel_lens: :math:`(B)`
- dur_output: :math:`(B, T_src)`
- dur_target: :math:`(B, T_src)`
- pitch_output: :math:`(B, 1, T_src)`
- pitch_target: :math:`(B, 1, T_src)`
- energy_output: :math:`(B, 1, T_src)`
- energy_target: :math:`(B, 1, T_src)`
- src_lens: :math:`(B)`
- p_prosody_ref: :math:`(B, T_src, 4)`
- p_prosody_pred: :math:`(B, T_src, 4)`
- u_prosody_ref: :math:`(B, 1, 256)
- u_prosody_pred: :math:`(B, 1, 256)
- aligner_logprob: :math:`(B, 1, T_mel, T_src)`
- aligner_hard: :math:`(B, T_mel, T_src)`
- aligner_soft: :math:`(B, T_mel, T_src)`
"""
src_mask = sequence_mask(src_lens).to(mel_output.device) # (B, T_src)
mel_mask = sequence_mask(mel_lens).to(mel_output.device) # (B, T_mel)
dur_target.requires_grad = False
mel_target.requires_grad = False
pitch_target.requires_grad = False
mel_predictions_normalized = sample_wise_min_max(mel_output).float().to(mel_output.device)
mel_targets_normalized = sample_wise_min_max(mel_target).float().to(mel_target.device)
masked_mel_predictions = mel_output.masked_select(mel_mask[:, None])
mel_targets = mel_target.masked_select(mel_mask[:, None])
mel_loss = self.mae_loss(masked_mel_predictions, mel_targets) * self.mel_loss_alpha
ssim_loss: torch.Tensor = self.ssim_loss(
mel_predictions_normalized.unsqueeze(1), mel_targets_normalized.unsqueeze(1),
) * self.ssim_loss_alpha
if ssim_loss.item() > 1.0 or ssim_loss.item() < 0.0:
print(
f"Overflow in ssim loss detected, which was {ssim_loss.item()}, setting to 1.0",
)
ssim_loss = torch.tensor([1.0], device=mel_output.device)
p_prosody_ref = p_prosody_ref.detach()
p_prosody_loss = self.mae_loss(
p_prosody_ref.masked_select(src_mask.unsqueeze(-1)),
p_prosody_pred.masked_select(src_mask.unsqueeze(-1)),
) * self.p_prosody_loss_alpha
u_prosody_ref = u_prosody_ref.detach()
u_prosody_loss = self.mae_loss(u_prosody_ref, u_prosody_pred) * self.u_prosody_loss_alpha
duration_loss = self.mse_loss(dur_output, dur_target) * self.dur_loss_alpha
pitch_output = pitch_output.masked_select(src_mask[:, None])
pitch_target = pitch_target.masked_select(src_mask[:, None])
pitch_loss = self.mse_loss(pitch_output, pitch_target) * self.pitch_loss_alpha
energy_output = energy_output.masked_select(src_mask[:, None])
energy_target = energy_target.masked_select(src_mask[:, None])
energy_loss = self.mse_loss(energy_output, energy_target) * self.energy_loss_alpha
forward_sum_loss = self.forward_sum_loss(
aligner_logprob,
src_lens,
mel_lens,
) * self.aligner_loss_alpha
binary_alignment_loss = self._binary_alignment_loss(
aligner_hard,
aligner_soft,
) * self.binary_alignment_loss_alpha
total_loss = (
mel_loss
+ ssim_loss
+ duration_loss
+ u_prosody_loss
+ p_prosody_loss
+ pitch_loss
+ forward_sum_loss
+ binary_alignment_loss
+ energy_loss
)
return (
total_loss,
mel_loss,
ssim_loss,
duration_loss,
u_prosody_loss,
p_prosody_loss,
pitch_loss,
forward_sum_loss,
binary_alignment_loss,
energy_loss,
)