nickovchinnikov's picture
Init
9d61c9b
raw
history blame
9.96 kB
import itertools
from typing import List
from lightning.pytorch.core import LightningModule
import torch
from torch import nn
from torch.optim import AdamW, Optimizer
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
from models.config import (
HifiGanConfig,
HifiGanPretrainingConfig,
)
from models.config import (
PreprocessingConfigHifiGAN as PreprocessingConfig,
)
from training.datasets.hifi_gan_dataset import train_dataloader
from training.loss import (
DiscriminatorLoss,
FeatureMatchingLoss,
GeneratorLoss,
)
from training.preprocess import TacotronSTFT
from .generator import Generator
from .mp_discriminator import MultiPeriodDiscriminator
from .ms_discriminator import MultiScaleDiscriminator
class HifiGan(LightningModule):
r"""HifiGan module.
This module contains the `Generator` and `Discriminator` models, and handles training and optimization.
"""
def __init__(
self,
lang: str = "en",
batch_size: int = 16,
sampling_rate: int = 44100,
):
r"""Initializes the `HifiGan`.
Args:
fine_tuning (bool, optional): Whether to use fine-tuning mode or not. Defaults to False.
lang (str): Language of the dataset.
batch_size (int): The batch size. Defaults to 16.
sampling_rate (int): The sampling rate of the audio. Defaults to 44100.
"""
super().__init__()
self.batch_size = batch_size
self.sampling_rate = sampling_rate
self.lang = lang
self.preprocess_config = PreprocessingConfig(
"multilingual",
sampling_rate=sampling_rate,
)
self.train_config = HifiGanPretrainingConfig()
self.generator = Generator(
h=HifiGanConfig(),
p=self.preprocess_config,
)
self.mpd = MultiPeriodDiscriminator()
self.msd = MultiScaleDiscriminator()
self.feature_loss = FeatureMatchingLoss()
self.discriminator_loss = DiscriminatorLoss()
self.generator_loss = GeneratorLoss()
self.mae_loss = nn.L1Loss()
self.tacotronSTFT = TacotronSTFT(
filter_length=self.preprocess_config.stft.filter_length,
hop_length=self.preprocess_config.stft.hop_length,
win_length=self.preprocess_config.stft.win_length,
n_mel_channels=self.preprocess_config.stft.n_mel_channels,
sampling_rate=self.preprocess_config.sampling_rate,
mel_fmin=self.preprocess_config.stft.mel_fmin,
mel_fmax=self.preprocess_config.stft.mel_fmax,
center=False,
)
# Mark TacotronSTFT as non-trainable
for param in self.tacotronSTFT.parameters():
param.requires_grad = False
# Switch to manual optimization
self.automatic_optimization = False
def forward(self, y_pred: torch.Tensor) -> torch.Tensor:
r"""Performs a forward pass through the UnivNet model.
Args:
y_pred (torch.Tensor): The predicted mel spectrogram.
Returns:
torch.Tensor: The output of the UnivNet model.
"""
wav_prediction = self.generator.forward(y_pred)
return wav_prediction.squeeze()
def training_step(self, batch: List, batch_idx: int):
r"""Performs a training step for the model.
Args:
batch (Tuple[str, Tensor, Tensor]): The batch of data for training. Each item in the list is a tuple containing the ID of the item, the audio waveform, and the mel spectrogram.
batch_idx (int): Index of the batch.
Returns:
dict: A dictionary containing the total loss for the generator and logs for tensorboard.
"""
_, audio, mel = batch
# Access your optimizers
optimizers = self.optimizers()
schedulers = self.lr_schedulers()
opt_generator: Optimizer = optimizers[0] # type: ignore
sch_generator: ExponentialLR = schedulers[0] # type: ignore
opt_discriminator: Optimizer = optimizers[1] # type: ignore
sch_discriminator: ExponentialLR = schedulers[1] # type: ignore
# Generate fake audio
audio_pred = self.generator.forward(mel)
_, fake_mel = self.tacotronSTFT(audio_pred.squeeze(1))
# Train discriminator
opt_discriminator.zero_grad()
mpd_score_real, mpd_score_gen, _, _ = self.mpd.forward(
y=audio,
y_hat=audio_pred.detach(),
)
loss_disc_mpd, _, _ = self.discriminator_loss.forward(
disc_real_outputs=mpd_score_real,
disc_generated_outputs=mpd_score_gen,
)
msd_score_real, msd_score_gen, _, _ = self.msd(
y=audio,
y_hat=audio_pred.detach(),
)
loss_disc_msd, _, _ = self.discriminator_loss(
disc_real_outputs=msd_score_real,
disc_generated_outputs=msd_score_gen,
)
loss_d = loss_disc_msd + loss_disc_mpd
# Step for the discriminator
self.manual_backward(loss_d, retain_graph=True)
opt_discriminator.step()
# Train generator
opt_generator.zero_grad()
loss_mel = self.mae_loss(fake_mel, mel)
_, mpd_score_gen, fmap_mpd_real, fmap_mpd_gen = self.mpd.forward(
y=audio,
y_hat=audio_pred,
)
_, msd_score_gen, fmap_msd_real, fmap_msd_gen = self.msd.forward(
y=audio,
y_hat=audio_pred,
)
loss_fm_mpd = self.feature_loss.forward(
fmap_r=fmap_mpd_real,
fmap_g=fmap_mpd_gen,
)
loss_fm_msd = self.feature_loss.forward(
fmap_r=fmap_msd_real,
fmap_g=fmap_msd_gen,
)
loss_gen_mpd, _ = self.generator_loss.forward(disc_outputs=mpd_score_gen)
loss_gen_msd, _ = self.generator_loss.forward(disc_outputs=msd_score_gen)
loss_g = (
loss_gen_msd
+ loss_gen_mpd
+ loss_fm_msd
+ loss_fm_mpd
+ loss_mel * self.train_config.l1_factor
)
# step for the generator
self.manual_backward(loss_g, retain_graph=True)
opt_generator.step()
# Schedulers step
sch_generator.step()
sch_discriminator.step()
# Gen losses
self.log(
"loss_gen_msd",
loss_gen_msd,
sync_dist=True,
batch_size=self.batch_size,
)
self.log(
"loss_gen_mpd",
loss_gen_mpd,
sync_dist=True,
batch_size=self.batch_size,
)
self.log(
"loss_fm_msd",
loss_fm_msd,
sync_dist=True,
batch_size=self.batch_size,
)
self.log(
"loss_fm_mpd",
loss_fm_mpd,
sync_dist=True,
batch_size=self.batch_size,
)
self.log(
"mel_loss",
loss_mel,
sync_dist=True,
batch_size=self.batch_size,
)
# Disc logs
self.log(
"loss_disc_msd",
loss_disc_msd,
sync_dist=True,
batch_size=self.batch_size,
)
self.log(
"loss_disc_mpd",
loss_disc_mpd,
sync_dist=True,
batch_size=self.batch_size,
)
self.log(
"total_loss_disc",
loss_d,
sync_dist=True,
batch_size=self.batch_size,
)
def configure_optimizers(self):
r"""Configures the optimizers and learning rate schedulers for the `UnivNet` and `Discriminator` models.
This method creates an `AdamW` optimizer and an `ExponentialLR` scheduler for each model.
The learning rate, betas, and decay rate for the optimizers and schedulers are taken from the training configuration.
Returns
tuple: A tuple containing two dictionaries. Each dictionary contains the optimizer and learning rate scheduler for one of the models.
"""
optim_generator = AdamW(
self.generator.parameters(),
self.train_config.learning_rate,
betas=(self.train_config.adam_b1, self.train_config.adam_b2),
)
scheduler_generator = ExponentialLR(
optim_generator,
gamma=self.train_config.lr_decay,
last_epoch=-1,
)
optim_discriminator = AdamW(
itertools.chain(self.msd.parameters(), self.mpd.parameters()),
self.train_config.learning_rate,
betas=(self.train_config.adam_b1, self.train_config.adam_b2),
)
scheduler_discriminator = ExponentialLR(
optim_discriminator,
gamma=self.train_config.lr_decay,
last_epoch=-1,
)
return (
{"optimizer": optim_generator, "lr_scheduler": scheduler_generator},
{"optimizer": optim_discriminator, "lr_scheduler": scheduler_discriminator},
)
def train_dataloader(
self,
root: str = "datasets_cache",
cache: bool = True,
cache_dir: str = "/dev/shm",
) -> DataLoader:
r"""Returns the training dataloader, that is using the LibriTTS dataset.
Args:
root (str): The root directory of the dataset.
cache (bool): Whether to cache the preprocessed data.
cache_dir (str): The directory for the cache. Defaults to "/dev/shm".
Returns:
Tupple[DataLoader, DataLoader]: The training and validation dataloaders.
"""
return train_dataloader(
batch_size=self.batch_size,
num_workers=self.preprocess_config.workers,
root=root,
cache=cache,
cache_dir=cache_dir,
lang=self.lang,
)