Spaces:
Sleeping
Sleeping
from typing import List, Tuple | |
import torch | |
from torch import Tensor, nn | |
from torch.nn import Conv2d, Module | |
import torch.nn.functional as F | |
from torch.nn.utils import spectral_norm, weight_norm | |
from models.config import HifiGanPretrainingConfig | |
from .utils import get_padding | |
# Leaky ReLU slope | |
LRELU_SLOPE = HifiGanPretrainingConfig.lReLU_slope | |
class DiscriminatorP(Module): | |
def __init__( | |
self, | |
period: int, | |
kernel_size: int = 5, | |
stride: int = 3, | |
use_spectral_norm: bool = False, | |
): | |
r"""Initialize the DiscriminatorP module. | |
Args: | |
period (int): The period for the discriminator. | |
kernel_size (int, optional): The kernel size for the convolutional layers. Defaults to 5. | |
stride (int, optional): The stride for the convolutional layers. Defaults to 3. | |
use_spectral_norm (bool, optional): Whether to use spectral normalization. Defaults to False. | |
""" | |
super().__init__() | |
self.period = period | |
norm_f = weight_norm if not use_spectral_norm else spectral_norm | |
self.convs = nn.ModuleList( | |
[ | |
norm_f( | |
Conv2d( | |
1, | |
32, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
), | |
), | |
norm_f( | |
Conv2d( | |
32, | |
128, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
), | |
), | |
norm_f( | |
Conv2d( | |
128, | |
512, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
), | |
), | |
norm_f( | |
Conv2d( | |
512, | |
1024, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
), | |
), | |
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), | |
], | |
) | |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
def forward(self, x: Tensor) -> Tuple[Tensor, List[Tensor]]: | |
r"""Forward pass of the DiscriminatorP module. | |
Args: | |
x (Tensor): The input tensor. | |
Returns: | |
Tuple[Tensor, List[Tensor]]: The output tensor and a list of feature maps. | |
""" | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for layer in self.convs: | |
x = layer(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiPeriodDiscriminator(torch.nn.Module): | |
def __init__(self): | |
r"""Initialize the MultiPeriodDiscriminator module.""" | |
super().__init__() | |
self.discriminators = nn.ModuleList( | |
[ | |
DiscriminatorP(2), | |
DiscriminatorP(3), | |
DiscriminatorP(5), | |
DiscriminatorP(7), | |
DiscriminatorP(11), | |
], | |
) | |
def forward( | |
self, | |
y: Tensor, | |
y_hat: Tensor, | |
) -> Tuple[ | |
List[torch.Tensor], | |
List[torch.Tensor], | |
List[torch.Tensor], | |
List[torch.Tensor], | |
]: | |
r"""Forward pass of the MultiPeriodDiscriminator module. | |
Args: | |
y (torch.Tensor): The real audio tensor. | |
y_hat (torch.Tensor): The generated audio tensor. | |
Returns: | |
Tuple[List[torch.Tensor], List[torch.Tensor], List[torch.Tensor], List[torch.Tensor]]: | |
A tuple containing lists of discriminator outputs and feature maps for real and generated audio. | |
""" | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for _, discriminator in enumerate(self.discriminators): | |
y_d_r, fmap_r = discriminator(y) | |
y_d_g, fmap_g = discriminator(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |