Spaces:
Sleeping
Sleeping
from datetime import datetime | |
import logging | |
import sys | |
from lightning.pytorch import Trainer | |
from lightning.pytorch.accelerators import find_usable_cuda_devices # type: ignore | |
from lightning.pytorch.strategies import DDPStrategy | |
import torch | |
from models.vocoder.univnet import UnivNet | |
# Get the current date and time | |
now = datetime.now() | |
# Format the current date and time as a string | |
timestamp = now.strftime("%Y%m%d_%H%M%S") | |
# Create a logger | |
logger = logging.getLogger("my_logger") | |
# Set the level of the logger to ERROR | |
logger.setLevel(logging.ERROR) | |
# Create a file handler that logs error messages to a file with the current timestamp in its name | |
handler = logging.FileHandler(f"logs/error_{timestamp}.log") | |
# Create a formatter and add it to the handler | |
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") | |
handler.setFormatter(formatter) | |
# Add the handler to the logger | |
logger.addHandler(handler) | |
print("usable_cuda_devices: ", find_usable_cuda_devices()) | |
# Set the precision of the matrix multiplication to float32 to improve the performance of the training | |
torch.set_float32_matmul_precision("high") | |
default_root_dir = "logs" | |
# ckpt_acoustic="./checkpoints/epoch=301-step=124630.ckpt" | |
# ckpt_vocoder="./checkpoints/vocoder.ckpt" | |
try: | |
trainer = Trainer( | |
accelerator="cuda", | |
devices=-1, | |
strategy=DDPStrategy( | |
gradient_as_bucket_view=True, | |
find_unused_parameters=True, | |
), | |
# Save checkpoints to the `default_root_dir` directory | |
default_root_dir=default_root_dir, | |
enable_checkpointing=True, | |
max_epochs=-1, | |
log_every_n_steps=10, | |
) | |
model = UnivNet() | |
train_dataloader = model.train_dataloader( | |
# NOTE: Preload the cached dataset into the RAM | |
cache_dir="/dev/shm/", | |
cache=True, | |
mem_cache=False, | |
) | |
trainer.fit( | |
model=model, | |
train_dataloaders=train_dataloader, | |
# val_dataloaders=val_dataloader, | |
# Resume training states from the checkpoint file | |
# ckpt_path=ckpt_acoustic, | |
) | |
except Exception as e: | |
# Log the error message | |
logger.error(f"An error occurred: {e}") | |
sys.exit(1) | |