Spaces:
Sleeping
Sleeping
import unittest | |
import torch | |
from models.config import AcousticENModelConfig | |
from training.loss.delightful_tts_loss import ( | |
DelightfulTTSLoss, | |
ForwardSumLoss, | |
sample_wise_min_max, | |
sequence_mask, | |
) | |
class TestLosses(unittest.TestCase): | |
def setUp(self): | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def test_sequence_mask(self): | |
sequence_length = torch.tensor([2, 3, 4], device=self.device) | |
max_len = 5 | |
mask = sequence_mask(sequence_length, max_len) | |
expected_mask = torch.tensor([[True, True, False, False, False], | |
[True, True, True, False, False], | |
[True, True, True, True, False]], device=self.device) | |
self.assertTrue(torch.equal(mask, expected_mask)) | |
def test_sample_wise_min_max(self): | |
x = torch.tensor([[[1, 1], [1, 0], [0, 1]]], dtype=torch.float32, device=self.device) | |
normalized_x = sample_wise_min_max(x) | |
expected_normalized_x = torch.tensor([[ | |
[1., 1.], | |
[1., 0.], | |
[0., 1.], | |
]], device=self.device) | |
self.assertTrue(torch.allclose(normalized_x, expected_normalized_x)) | |
def test_ForwardSumLoss(self): | |
loss_function = ForwardSumLoss() | |
attn_logprob = torch.randn((1, 1, 11, 11)) | |
src_lens = torch.ones((1,), dtype=torch.long) | |
mel_lens = torch.ones((1,), dtype=torch.long) | |
loss = loss_function(attn_logprob, src_lens, mel_lens) | |
self.assertTrue(isinstance(loss, torch.Tensor)) | |
def test_DelightfulTTSLoss(self): | |
model_config = AcousticENModelConfig() | |
loss_function = DelightfulTTSLoss(model_config) | |
mel_output = torch.randn((1, 11, 11)) | |
mel_target = torch.randn((1, 11, 11)) | |
mel_lens = torch.ones((1,), dtype=torch.long) | |
dur_output = torch.randn((1, 11)) | |
dur_target = torch.randn((1, 11)) | |
pitch_output = torch.randn((1, 11)) | |
pitch_target = torch.randn((1, 11)) | |
energy_output = torch.randn((1, 11)) | |
energy_target = torch.randn((1, 11)) | |
src_lens = torch.ones((1,), dtype=torch.long) | |
p_prosody_ref = torch.randn((1, 11, 11)) | |
p_prosody_pred = torch.randn((1, 11, 11)) | |
u_prosody_ref = torch.randn((1, 11, 11)) | |
u_prosody_pred = torch.randn((1, 11, 11)) | |
aligner_logprob = torch.randn((1, 1, 11, 11)) | |
aligner_hard = torch.randn((1, 11, 11)) | |
aligner_soft = torch.randn((1, 11, 11)) | |
total_loss, _, _, _, _, _, _, _, _, _ = loss_function( | |
mel_output, mel_target, mel_lens, dur_output, dur_target, pitch_output, pitch_target, | |
energy_output, energy_target, src_lens, p_prosody_ref, p_prosody_pred, | |
u_prosody_ref, u_prosody_pred, aligner_logprob, aligner_hard, aligner_soft, | |
) | |
self.assertTrue(isinstance(total_loss, torch.Tensor)) | |
if __name__ == "__main__": | |
unittest.main() | |