Spaces:
Sleeping
Sleeping
import unittest | |
import torch | |
from training.loss.utils import sample_wise_min_max | |
class TestSampleWiseMinMax(unittest.TestCase): | |
def test_sample_wise_min_max(self): | |
# Test case 1: Test with batch size 1 | |
x = torch.tensor([[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]) | |
normalized = sample_wise_min_max(x) | |
expected = torch.tensor( | |
[[[0.0, 0.125, 0.25], [0.375, 0.5, 0.625], [0.75, 0.875, 1.0]]], | |
) | |
self.assertTrue(torch.allclose(normalized, expected)) | |
# Test case 2: Test with batch size 2 | |
x = torch.tensor( | |
[ | |
[[1, 2, 3], [4, 5, 6], [7, 8, 9]], | |
[[2, 4, 6], [8, 10, 12], [14, 16, 18]], | |
], | |
) | |
normalized = sample_wise_min_max(x) | |
expected = torch.tensor( | |
[ | |
[[0.0, 0.125, 0.25], [0.375, 0.5, 0.625], [0.75, 0.875, 1.0]], | |
[[0.0, 0.125, 0.25], [0.375, 0.5, 0.625], [0.75, 0.875, 1.0]], | |
], | |
) | |
self.assertTrue(torch.allclose(normalized, expected)) | |
# Test case 3: Test with negative values | |
x = torch.tensor( | |
[ | |
[[-1, -2, -3], [-4, -5, -6], [-7, -8, -9]], | |
[[-2, -4, -6], [-8, -10, -12], [-14, -16, -18]], | |
], | |
) | |
normalized = sample_wise_min_max(x) | |
expected = torch.tensor( | |
[ | |
[[1.0, 0.875, 0.75], [0.625, 0.5, 0.375], [0.25, 0.125, 0.0]], | |
[[1.0, 0.875, 0.75], [0.625, 0.5, 0.375], [0.25, 0.125, 0.0]], | |
], | |
) | |
self.assertTrue(torch.allclose(normalized, expected)) | |
if __name__ == "__main__": | |
unittest.main() | |