PeechTTSv22050 / training /loss /tests /test_stft_loss.py
nickovchinnikov's picture
Init
9d61c9b
import unittest
import torch
from training.loss import STFTLoss
class TestSTFTLoss(unittest.TestCase):
def test_stft_loss(self):
torch.random.manual_seed(0)
# Test the STFT loss function with random input tensors
loss_fn = STFTLoss()
x = torch.randn(
4,
16000,
)
y = torch.randn(
4,
16000,
)
sc_loss, mag_loss = loss_fn(x, y)
self.assertIsInstance(sc_loss, torch.Tensor)
self.assertEqual(sc_loss.shape, torch.Size([]))
self.assertIsInstance(mag_loss, torch.Tensor)
self.assertEqual(mag_loss.shape, torch.Size([]))
def test_stft_loss_nonzero(self):
# Test the STFT loss function with non-zero loss
loss_fn = STFTLoss()
# Reproducibility
torch.manual_seed(0)
x_mag = torch.randn(4, 16000, dtype=torch.float32)
y_mag = torch.randn(4, 16000, dtype=torch.float32)
sc_loss, mag_loss = loss_fn(x_mag, y_mag)
self.assertIsInstance(sc_loss, torch.Tensor)
self.assertEqual(sc_loss.shape, torch.Size([]))
self.assertIsInstance(mag_loss, torch.Tensor)
self.assertEqual(mag_loss.shape, torch.Size([]))
self.assertGreater(sc_loss, 0.0)
self.assertGreater(mag_loss, 0.0)
expected_sc = torch.tensor(0.6559)
self.assertTrue(torch.allclose(sc_loss, expected_sc, rtol=1e-4, atol=1e-4))
expected_mag = torch.tensor(0.6977)
self.assertTrue(torch.allclose(mag_loss, expected_mag, rtol=1e-4, atol=1e-4))
if __name__ == "__main__":
unittest.main()