PeechTTSv22050 / training /preprocess /preprocess_libritts.py
nickovchinnikov's picture
Init
9d61c9b
from dataclasses import dataclass
import math
import random
from typing import Any, List, Tuple, Union
import numpy as np
from scipy.stats import betabinom
import torch
import torch.nn.functional as F
from models.config import PreprocessingConfig, VocoderBasicConfig, get_lang_map
from .audio import normalize_loudness, preprocess_audio
from .audio_processor import AudioProcessor
from .compute_yin import compute_yin, norm_interp_f0
from .normalize_text import NormalizeText
from .tacotron_stft import TacotronSTFT
from .tokenizer_ipa_espeak import TokenizerIpaEspeak as TokenizerIPA
@dataclass
class PreprocessForAcousticResult:
wav: torch.Tensor
mel: torch.Tensor
pitch: torch.Tensor
phones_ipa: Union[str, List[str]]
phones: torch.Tensor
attn_prior: torch.Tensor
energy: torch.Tensor
raw_text: str
normalized_text: str
speaker_id: int
chapter_id: str | int
utterance_id: str
pitch_is_normalized: bool
class PreprocessLibriTTS:
r"""Preprocessing PreprocessLibriTTS audio and text data for use with a TacotronSTFT model.
Args:
preprocess_config (PreprocessingConfig): The preprocessing configuration.
lang (str): The language of the input text.
Attributes:
min_seconds (float): The minimum duration of audio clips in seconds.
max_seconds (float): The maximum duration of audio clips in seconds.
hop_length (int): The hop length of the STFT.
sampling_rate (int): The sampling rate of the audio.
use_audio_normalization (bool): Whether to normalize the loudness of the audio.
tacotronSTFT (TacotronSTFT): The TacotronSTFT object used for computing mel spectrograms.
min_samples (int): The minimum number of audio samples in a clip.
max_samples (int): The maximum number of audio samples in a clip.
"""
def __init__(
self,
preprocess_config: PreprocessingConfig,
lang: str = "en",
):
super().__init__()
lang_map = get_lang_map(lang)
self.phonemizer_lang = lang_map.phonemizer
normilize_text_lang = lang_map.nemo
self.normilize_text = NormalizeText(normilize_text_lang)
self.tokenizer = TokenizerIPA(lang)
self.vocoder_train_config = VocoderBasicConfig()
self.preprocess_config = preprocess_config
self.sampling_rate = self.preprocess_config.sampling_rate
self.use_audio_normalization = self.preprocess_config.use_audio_normalization
self.hop_length = self.preprocess_config.stft.hop_length
self.filter_length = self.preprocess_config.stft.filter_length
self.mel_fmin = self.preprocess_config.stft.mel_fmin
self.win_length = self.preprocess_config.stft.win_length
self.tacotronSTFT = TacotronSTFT(
filter_length=self.filter_length,
hop_length=self.hop_length,
win_length=self.preprocess_config.stft.win_length,
n_mel_channels=self.preprocess_config.stft.n_mel_channels,
sampling_rate=self.sampling_rate,
mel_fmin=self.mel_fmin,
mel_fmax=self.preprocess_config.stft.mel_fmax,
center=False,
)
min_seconds, max_seconds = (
self.preprocess_config.min_seconds,
self.preprocess_config.max_seconds,
)
self.min_samples = int(self.sampling_rate * min_seconds)
self.max_samples = int(self.sampling_rate * max_seconds)
self.audio_processor = AudioProcessor()
def beta_binomial_prior_distribution(
self,
phoneme_count: int,
mel_count: int,
scaling_factor: float = 1.0,
) -> torch.Tensor:
r"""Computes the beta-binomial prior distribution for the attention mechanism.
Args:
phoneme_count (int): Number of phonemes in the input text.
mel_count (int): Number of mel frames in the input mel-spectrogram.
scaling_factor (float, optional): Scaling factor for the beta distribution. Defaults to 1.0.
Returns:
torch.Tensor: A 2D tensor containing the prior distribution.
"""
P, M = phoneme_count, mel_count
x = np.arange(0, P)
mel_text_probs = []
for i in range(1, M + 1):
a, b = scaling_factor * i, scaling_factor * (M + 1 - i)
rv: Any = betabinom(P, a, b)
mel_i_prob = rv.pmf(x)
mel_text_probs.append(mel_i_prob)
return torch.from_numpy(np.array(mel_text_probs))
def acoustic(
self,
row: Tuple[torch.Tensor, int, str, str, int, str | int, str],
) -> Union[None, PreprocessForAcousticResult]:
r"""Preprocesses audio and text data for use with a TacotronSTFT model.
Args:
row (Tuple[torch.FloatTensor, int, str, str, int, str | int, str]): The input row. The row is a tuple containing the following elements: (audio, sr_actual, raw_text, normalized_text, speaker_id, chapter_id, utterance_id).
Returns:
dict: A dictionary containing the preprocessed audio and text data.
Examples:
>>> preprocess_audio = PreprocessAudio("english_only")
>>> audio = torch.randn(1, 44100)
>>> sr_actual = 44100
>>> raw_text = "Hello, world!"
>>> output = preprocess_audio(audio, sr_actual, raw_text)
>>> output.keys()
dict_keys(['wav', 'mel', 'pitch', 'phones', 'raw_text', 'normalized_text', 'speaker_id', 'chapter_id', 'utterance_id', 'pitch_is_normalized'])
"""
(
audio,
sr_actual,
raw_text,
normalized_text,
speaker_id,
chapter_id,
utterance_id,
) = row
wav, sampling_rate = preprocess_audio(audio, sr_actual, self.sampling_rate)
# TODO: check this, maybe you need to move it to some other place
# TODO: maybe we can increate the max_samples ?
# if wav.shape[0] < self.min_samples or wav.shape[0] > self.max_samples:
# return None
if self.use_audio_normalization:
wav = normalize_loudness(wav)
normalized_text = self.normilize_text(normalized_text)
# NOTE: fixed version of tokenizer with punctuation
phones_ipa, phones = self.tokenizer(normalized_text)
# Convert to tensor
phones = torch.Tensor(phones)
mel_spectrogram = self.tacotronSTFT.get_mel_from_wav(wav)
# Skipping small sample due to the mel-spectrogram containing less than self.mel_fmin frames
# if mel_spectrogram.shape[1] < self.mel_fmin:
# return None
# Text is longer than mel, will be skipped due to monotonic alignment search
if phones.shape[0] >= mel_spectrogram.shape[1]:
return None
pitch, _, _, _ = compute_yin(
wav,
sr=sampling_rate,
w_len=self.filter_length,
w_step=self.hop_length,
f0_min=50,
f0_max=1000,
harmo_thresh=0.25,
)
pitch, _ = norm_interp_f0(pitch)
if np.sum(pitch != 0) <= 1:
return None
pitch = torch.from_numpy(pitch)
# TODO this shouldnt be necessary, currently pitch sometimes has 1 less frame than spectrogram,
# We should find out why
mel_spectrogram = mel_spectrogram[:, : pitch.shape[0]]
attn_prior = self.beta_binomial_prior_distribution(
phones.shape[0],
mel_spectrogram.shape[1],
).T
assert pitch.shape[0] == mel_spectrogram.shape[1], (
pitch.shape,
mel_spectrogram.shape[1],
)
energy = self.audio_processor.wav_to_energy(
wav.unsqueeze(0),
self.filter_length,
self.hop_length,
self.win_length,
)
return PreprocessForAcousticResult(
wav=wav,
mel=mel_spectrogram,
pitch=pitch,
attn_prior=attn_prior,
energy=energy,
phones_ipa=phones_ipa,
phones=phones,
raw_text=raw_text,
normalized_text=normalized_text,
speaker_id=speaker_id,
chapter_id=chapter_id,
utterance_id=utterance_id,
# TODO: check the pitch normalization process
pitch_is_normalized=False,
)
def univnet(self, row: Tuple[torch.Tensor, int, str, str, int, str | int, str]):
r"""Preprocesses audio data for use with a UnivNet model.
This method takes a row of data, extracts the audio and preprocesses it.
It then selects a random segment from the preprocessed audio and its corresponding mel spectrogram.
Args:
row (Tuple[torch.FloatTensor, int, str, str, int, str | int, str]): The input row. The row is a tuple containing the following elements: (audio, sr_actual, raw_text, normalized_text, speaker_id, chapter_id, utterance_id).
Returns:
Tuple[torch.Tensor, torch.Tensor, int]: A tuple containing the selected segment of the mel spectrogram, the corresponding audio segment, and the speaker ID.
Examples:
>>> preprocess = PreprocessLibriTTS()
>>> audio = torch.randn(1, 44100)
>>> sr_actual = 44100
>>> speaker_id = 0
>>> mel, audio_segment, speaker_id = preprocess.preprocess_univnet((audio, sr_actual, "", "", speaker_id, 0, ""))
"""
(
audio,
sr_actual,
_,
_,
speaker_id,
_,
_,
) = row
segment_size = self.vocoder_train_config.segment_size
frames_per_seg = math.ceil(segment_size / self.hop_length)
wav, _ = preprocess_audio(audio, sr_actual, self.sampling_rate)
if self.use_audio_normalization:
wav = normalize_loudness(wav)
mel_spectrogram = self.tacotronSTFT.get_mel_from_wav(wav)
if wav.shape[0] < segment_size:
wav = F.pad(
wav,
(0, segment_size - wav.shape[0]),
"constant",
)
if mel_spectrogram.shape[1] < frames_per_seg:
mel_spectrogram = F.pad(
mel_spectrogram,
(0, frames_per_seg - mel_spectrogram.shape[1]),
"constant",
)
from_frame = random.randint(0, mel_spectrogram.shape[1] - frames_per_seg)
# Skip last frame, otherwise errors are thrown, find out why
if from_frame > 0:
from_frame -= 1
till_frame = from_frame + frames_per_seg
mel_spectrogram = mel_spectrogram[:, from_frame:till_frame]
wav = wav[from_frame * self.hop_length : till_frame * self.hop_length]
return mel_spectrogram, wav, speaker_id