PeechTTSv22050 / training /preprocess /wav2vec_aligner.py
nickovchinnikov's picture
Init
9d61c9b
from dataclasses import dataclass
import os
from typing import List, Tuple
import torch
from torch.nn import Module
import torchaudio
from transformers import (
AutoConfig,
AutoModelForCTC,
AutoProcessor,
)
@dataclass
class Item:
r"""A data class that represents an item with a sentence,
a path to a wav file, and an output path.
"""
sent: str
wav_path: str
out_path: str
@dataclass
class Point:
r"""A data class that represents a point with a token index,
a time index, and a score.
"""
token_index: int
time_index: int
score: float
@dataclass
class Segment:
r"""A data class that represents a segment with a label,
a start time, an end time, a duration, and a score.
"""
label: str
start: int
end: int
# TODO: check that the scale of duration is correct...
duration: float
score: float
@property
def length(self):
return self.end - self.start
class Wav2VecAligner(Module):
r"""Wav2VecAligner model.
The Wav2VecAligner model is designed for aligning audio data with text data.
This class handles the training and validation of the Wav2VecAligner model.
Attributes
config (AutoConfig): The configuration for the pre-trained model.
model (AutoModelForCTC): The pre-trained model.
processor (AutoProcessor): The processor for the pre-trained model.
labels (List): The labels from the vocabulary of the tokenizer.
blank_id (int): The ID of the blank token.
Methods
load_audio: Load an audio file from the specified path.
encode: Encode the labels.
decode: Decode the tokens.
align_single_sample: Align a single sample of audio data with the corresponding text.
get_trellis: Build a trellis matrix that represents the probabilities of each source token being at a certain time step.
backtrack: Walk backwards from the last
merge_repeats: Merge repeated tokens into a single segment.
merge_words: Merge words in the given path.
forward: Perform the forward pass of the model, which involves loading the audio data, aligning the audio with the text, building the trellis, backtracking to find the optimal path, merging repeated tokens, and finally merging words.
"""
def __init__(
self,
model_name: str = "facebook/wav2vec2-base-960h",
):
r"""Initialize a new instance of the Wav2VecAligner class.
Args:
model_name (str): The name of the pre-trained model to use. Defaults to "facebook/wav2vec2-base-960h".
"""
super().__init__()
# Load the config
self.config = AutoConfig.from_pretrained(model_name)
self.model = AutoModelForCTC.from_pretrained(model_name)
self.model.eval()
self.processor = AutoProcessor.from_pretrained(model_name)
# get labels from vocab
self.labels = list(self.processor.tokenizer.get_vocab().keys())
for i in range(len(self.labels)):
if self.labels[i] == "[PAD]" or self.labels[i] == "<pad>":
self.blank_id = i
print("Blank Token id [PAD]/<pad>", self.blank_id)
def load_audio(self, wav_path: str) -> Tuple[torch.Tensor, int]:
r"""Load an audio file from the specified path.
Args:
wav_path (str): The path to the audio file.
Returns:
Tuple[torch.Tensor, int]: A tuple containing the loaded audio data and the sample rate, or a FileNotFoundError if the file does not exist.
"""
if not os.path.isfile(wav_path):
raise FileNotFoundError(wav_path, "Not found in wavs directory")
speech_array, sampling_rate = torchaudio.load(wav_path) # type: ignore
return speech_array, sampling_rate
def encode(self, text: str) -> List:
# encode labels
with self.processor.as_target_processor():
return self.processor(text, return_tensors="pt").input_ids
def decode(self, tokens: List):
# Decode tokens
decoded = self.processor.batch_decode(tokens)
return decoded[0]
def align_single_sample(
self, audio_input: torch.Tensor, text: str,
) -> Tuple[torch.Tensor, List, str]:
r"""Align a single sample of audio data with the corresponding text.
Args:
audio_input (torch.Tensor): The audio data.
text (str): The corresponding text.
Returns:
Tuple[torch.Tensor, List, str]: A tuple containing the emissions, the tokens, and the transcript.
"""
transcript = "|".join(text.split(" "))
transcript = f"|{transcript}|"
with torch.inference_mode():
logits = self.model(audio_input).logits
# Get the emission probability at frame level
# Compute the probability in log-domain to avoid numerical instability
# For this purpose, we normalize the emission with `torch.log_softmax()`
emissions = torch.log_softmax(logits, dim=-1)
emissions = emissions[0]
tokens = self.encode(transcript)[0]
return emissions, tokens, transcript
def get_trellis(
self,
emission: torch.Tensor,
tokens: List,
) -> torch.Tensor:
r"""Build a trellis matrix of shape (num_frames + 1, num_tokens + 1)
that represents the probabilities of each source token being at a certain time step.
Since we are looking for the most likely transitions, we take the more likely path for the value of $k_{(t+1,j+1)}$, that is:
$k_{t+1, j+1} = \max(k_{t, j} p_{t+1, c_{j+1}}, k_{t, j+1} p_{t+1, \text{repeat}})$
Args:
emission (torch.Tensor): The emission tensor.
tokens (List): The list of tokens.
Returns:
torch.Tensor: The trellis matrix.
"""
num_frames = emission.size(0)
num_tokens = len(tokens)
# Trellis has extra diemsions for both time axis and tokens.
# The extra dim for tokens represents <SoS> (start-of-sentence)
# The extra dim for time axis is for simplification of the code.
trellis = torch.zeros((num_frames, num_tokens))
trellis[1:, 0] = torch.cumsum(emission[1:, self.blank_id], 0)
trellis[0, 1:] = -float("inf")
trellis[-num_tokens + 1 :, 0] = float("inf")
for t in range(num_frames - 1):
trellis[t + 1, 1:] = torch.maximum(
# Score for staying at the same token
trellis[t, 1:] + emission[t, self.blank_id],
# Score for changing to the next token
trellis[t, :-1] + emission[t, tokens[1:]],
)
return trellis
def backtrack(
self,
trellis: torch.Tensor,
emission: torch.Tensor,
tokens: List,
) -> List[Point]:
r"""Walk backwards from the last (sentence_token, time_step) pair to build the optimal sequence alignment path.
Args:
trellis (torch.Tensor): The trellis matrix.
emission (torch.Tensor): The emission tensor.
tokens (List): The list of tokens.
Returns:
List[Point]: The optimal sequence alignment path.
"""
# Note:
# j and t are indices for trellis, which has extra dimensions
# for time and tokens at the beginning.
# When referring to time frame index `T` in trellis,
# the corresponding index in emission is `T-1`.
# Similarly, when referring to token index `J` in trellis,
# the corresponding index in transcript is `J-1`.
t, j = trellis.size(0) - 1, trellis.size(1) - 1
path = [Point(j, t, emission[t, self.blank_id].exp().item())]
while j > 0:
# Should not happen but just in case
assert t > 0
# 1. Figure out if the current position was stay or change
# Frame-wise score of stay vs change
p_stay = emission[t - 1, self.blank_id]
p_change = emission[t - 1, tokens[j]]
# Context-aware score for stay vs change
stayed = trellis[t - 1, j] + p_stay
changed = trellis[t - 1, j - 1] + p_change
# Update position
t -= 1
if changed > stayed:
j -= 1
# Store the path with frame-wise probability.
prob = (p_change if changed > stayed else p_stay).exp().item()
path.append(Point(j, t, prob))
# Now j == 0, which means, it reached the SoS.
# Fill up the rest for the sake of visualization
while t > 0:
prob = emission[t - 1, self.blank_id].exp().item()
path.append(Point(j, t - 1, prob))
t -= 1
return path[::-1]
def merge_repeats(self, path: List[Point], transcript: str) -> List[Segment]:
r"""Merge repeated tokens into a single segment.
Args:
path (List[Point]): The sequence alignment path.
transcript (str): The transcript.
Returns:
List[Segment]: The list of segments.
Note: this shouldn't affect repeated characters from the
original sentences (e.g. `ll` in `hello`)
"""
i1, i2 = 0, 0
segments = []
while i1 < len(path):
while i2 < len(path) and path[i1].token_index == path[i2].token_index:
i2 += 1
score = sum(path[k].score for k in range(i1, i2)) / (i2 - i1)
x0, x1 = path[i1].time_index, path[i2 - 1].time_index + 1
duration = x1 - x0
segments.append(
Segment(
transcript[path[i1].token_index],
x0,
x1,
duration,
score,
),
)
i1 = i2
return segments
# Merge words
def merge_words(
self, segments: List[Segment], separator: str = "|",
) -> List[Segment]:
r"""Merge words in the given path.
Args:
segments (List[Segment]): The list of segments.
separator (str): The separator character. Defaults to "|".
Returns:
List[Segment]: The list of merged words.
"""
words = []
i1, i2 = 0, 0
while i1 < len(segments):
if i2 >= len(segments) or segments[i2].label == separator:
if i1 != i2:
segs = segments[i1:i2]
word = "".join([seg.label for seg in segs])
score = sum(seg.score * seg.length for seg in segs) / sum(
seg.length for seg in segs
)
x0, x1 = segments[i1].start, segments[i2 - 1].end
duration = x1 - x0
words.append(Segment(word, x0, x1, duration, score))
i1 = i2 + 1
i2 = i1
else:
i2 += 1
return words
def forward(self, wav_path: str, text: str) -> List[Segment]:
r"""Perform the forward pass of the model, which involves loading the audio data, aligning the audio with the text,
building the trellis, backtracking to find the optimal path, merging repeated tokens, and finally merging words.
Args:
wav_path (str): The path to the audio file.
text (str): The corresponding text.
Returns:
List[Segment]: The list of segments representing the alignment of the audio data with the text.
"""
audio_input, _ = self.load_audio(wav_path)
emissions, tokens, transcript = self.align_single_sample(audio_input, text)
trellis = self.get_trellis(emissions, tokens)
path = self.backtrack(trellis, emissions, tokens)
merged_path = self.merge_repeats(path, transcript)
return self.merge_words(merged_path)
def save_segments(self, wav_path: str, text: str, save_dir: str):
r"""Perform the forward pass of the model to get the segments and save each segment to a file.
Used for debugging purposes.
Args:
wav_path (str): The path to the audio file.
text (str): The corresponding text.
save_dir (str): The directory where the audio files should be saved.
Returns:
None
"""
word_segments = self.forward(wav_path, text)
waveform, sampling_rate = self.load_audio(wav_path)
emissions, tokens, _ = self.align_single_sample(waveform, text)
trellis = self.get_trellis(emissions, tokens)
ratio = waveform.size(1) / trellis.size(0)
for i, word in enumerate(word_segments):
x0 = int(ratio * word.start)
x1 = int(ratio * word.end)
print(
f"{word.label} ({word.score:.2f}): {x0 / sampling_rate:.3f} - {x1 / sampling_rate:.3f} sec",
)
segment_waveform = waveform[:, x0:x1]
# Save the segment waveform to a file
filename = f"{i}_{word.label}.wav"
torchaudio.save( # type: ignore
os.path.join(save_dir, filename), segment_waveform, sampling_rate,
)