Spaces:
Sleeping
Sleeping
import unittest | |
import numpy as np | |
import torch | |
from training.tools import pad_1D, pad_2D, pad_3D | |
class TestPad(unittest.TestCase): | |
def test_pad_1D(self): | |
# Test case 1: Pad a list of 1D numpy arrays with different lengths | |
inputs = [torch.tensor([1, 2, 3]), torch.tensor([4, 5]), torch.tensor([6])] | |
expected_output = torch.tensor([[1, 2, 3], [4, 5, 0], [6, 0, 0]]) | |
self.assertTrue(torch.allclose(pad_1D(inputs), expected_output)) | |
# Test case 2: Pad a list of 1D numpy arrays with the same length | |
inputs = [torch.tensor([1, 2, 3]), torch.tensor([4, 5, 6]), torch.tensor([7, 8, 9])] | |
expected_output = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) | |
self.assertTrue(torch.allclose(pad_1D(inputs), expected_output)) | |
# Test case 3: Pad a list of 1D numpy arrays with a non-zero pad value | |
inputs = [torch.tensor([1, 2]), torch.tensor([3, 4, 5]), torch.tensor([6, 7, 8, 9])] | |
expected_output = torch.tensor([[1, 2, 0, 0], [3, 4, 5, 0], [6, 7, 8, 9]]) | |
self.assertTrue(torch.allclose(pad_1D(inputs, pad_value=0.0), expected_output)) | |
# Test case 4: Pad a list of 1D numpy arrays with a non-zero pad value | |
inputs = [torch.tensor([1, 2]), torch.tensor([3, 4, 5]), torch.tensor([6, 7, 8, 9])] | |
expected_output = torch.tensor([[1, 2, 1, 1], [3, 4, 5, 1], [6, 7, 8, 9]]) | |
self.assertTrue(torch.allclose(pad_1D(inputs, pad_value=1.0), expected_output)) | |
# Test case 5: Pad a list of 1D numpy arrays with a single non-empty array | |
inputs = [torch.tensor([1, 2, 3])] | |
expected_output = torch.tensor([[1, 2, 3]]) | |
self.assertTrue(torch.allclose(pad_1D(inputs), expected_output)) | |
def test_pad_2D(self): | |
# Test case 1: Pad a list of 2D numpy arrays with different shapes | |
inputs = [torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6, 7], [8, 9, 10]])] | |
expected_output = torch.tensor([[[1, 2, 0], [3, 4, 0]], [[5, 6, 7], [8, 9, 10]]]) | |
self.assertTrue(torch.allclose(pad_2D(inputs), expected_output)) | |
# Test case 2: Pad a list of 2D numpy arrays with the same shape | |
inputs = [torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6], [7, 8]])] | |
expected_output = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) | |
self.assertTrue(torch.allclose(pad_2D(inputs), expected_output)) | |
# Test case 3: Pad a list of 2D numpy arrays with a non-zero pad value | |
inputs = [torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6, 7], [8, 9, 10]])] | |
expected_output = torch.tensor([[[1, 2, 1], [3, 4, 1]], [[5, 6, 7], [8, 9, 10]]]) | |
self.assertTrue(torch.allclose(pad_2D(inputs, pad_value=1.0), expected_output)) | |
# Test case 4: Pad a list of 2D numpy arrays with a maximum length | |
inputs = [torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6, 7], [8, 9, 10]])] | |
expected_output = torch.tensor([[[1, 2, 0], [3, 4, 0]], [[5, 6, 7], [8, 9, 10]]]) | |
self.assertTrue(torch.allclose(pad_2D(inputs, maxlen=3), expected_output)) | |
# Test case 5: Pad a list of 2D numpy arrays with a single non-empty array | |
inputs = [torch.tensor([[1, 2], [3, 4]])] | |
expected_output = torch.tensor([[[1, 2], [3, 4]]]) | |
self.assertTrue(torch.allclose(pad_2D(inputs), expected_output)) | |
def test_pad_3D(self): | |
# Test case 1: Pad a 3D numpy array with different dimensions | |
inputs = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]]) | |
expected_output = torch.tensor( | |
[ | |
[[1, 2, 0], [3, 4, 0], [0, 0, 0]], | |
[[5, 6, 0], [7, 8, 0], [0, 0, 0]], | |
[[9, 10, 0], [11, 12, 0], [0, 0, 0]], | |
], | |
) | |
self.assertTrue(torch.allclose(pad_3D(inputs, B=3, T=3, L=3), expected_output)) | |
# Test case 2: Pad a 3D numpy array with the same dimensions | |
inputs = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]]) | |
expected_output = torch.tensor( | |
[ | |
[[1, 2], [3, 4]], | |
[[5, 6], [7, 8]], | |
[[9, 10], [11, 12]], | |
], | |
) | |
self.assertTrue(torch.allclose(pad_3D(inputs, B=3, T=2, L=2), expected_output)) | |
# Test case 3: Pad a 3D numpy array with a single element | |
inputs = torch.tensor([[[1, 2], [3, 4]]]) | |
expected_output = torch.tensor([[[1, 2, 0], [3, 4, 0]]]) | |
self.assertTrue(torch.allclose(pad_3D(inputs, B=1, T=2, L=3), expected_output)) | |
# Test case: Pad a list of 3D numpy arrays with different dimensions | |
inputs = [ | |
torch.tensor([[1, 2], [3, 4]]), | |
torch.tensor([[5, 6], [7, 8], [9, 10]]), | |
torch.tensor([[11, 12], [13, 14], [15, 16]]), | |
] | |
expected_output = torch.tensor( | |
[ | |
[[1, 2, 0], [3, 4, 0], [0, 0, 0], [0, 0, 0]], | |
[[5, 6, 0], [7, 8, 0], [9, 10, 0], [0, 0, 0]], | |
[[11, 12, 0], [13, 14, 0], [15, 16, 0], [0, 0, 0]], | |
], | |
) | |
self.assertTrue(torch.allclose(pad_3D(inputs, B=3, T=4, L=3), expected_output)) | |
if __name__ == "__main__": | |
unittest.main() | |