from dataclasses import dataclass # TODO: DEPRECATED! @dataclass class PostNetConfig: p_dropout: float postnet_embedding_dim: int postnet_kernel_size: int postnet_n_convolutions: int postnet_expetimental = PostNetConfig( p_dropout=0.1, postnet_embedding_dim=512, postnet_kernel_size=5, postnet_n_convolutions=3, ) # TODO: DEPRECATED! @dataclass class DiffusionConfig: # model parameters model: str n_mel_channels: int multi_speaker: bool # denoiser parameters residual_channels: int residual_layers: int denoiser_dropout: float noise_schedule_naive: str timesteps: int shallow_timesteps: int min_beta: float max_beta: float s: float pe_scale: int keep_bins: int # trainsformer params encoder_hidden: int decoder_hidden: int speaker_embed_dim: int # loss params noise_loss: str diff_en = DiffusionConfig( # model parameters model="shallow", n_mel_channels=100, multi_speaker=True, # denoiser parameters # residual_channels=256, # residual_channels=384, residual_channels=100, residual_layers=20, denoiser_dropout=0.2, noise_schedule_naive="vpsde", timesteps=10, shallow_timesteps=1, min_beta=0.1, max_beta=40, s=0.008, keep_bins=80, pe_scale=1000, # trainsformer params # encoder_hidden=100, encoder_hidden=512, decoder_hidden=512, # Speaker_emb + lang_emb speaker_embed_dim=1025, # loss params noise_loss="l1", ) diff_multi = DiffusionConfig( # model parameters model="shallow", n_mel_channels=100, multi_speaker=True, # denoiser parameters # residual_channels=256, residual_channels=100, residual_layers=20, denoiser_dropout=0.2, noise_schedule_naive="vpsde", timesteps=10, shallow_timesteps=1, min_beta=0.1, max_beta=40, s=0.008, pe_scale=1000, keep_bins=80, # trainsformer params encoder_hidden=512, decoder_hidden=512, # Speaker_emb + lang_emb speaker_embed_dim=1280, # loss params noise_loss="l1", )