from typing import List, Tuple import torch from torch import Tensor, nn from torch.nn import AvgPool1d, Conv1d, Module import torch.nn.functional as F from torch.nn.utils import spectral_norm, weight_norm from models.config import HifiGanPretrainingConfig # Leaky ReLU slope LRELU_SLOPE = HifiGanPretrainingConfig.lReLU_slope class DiscriminatorS(Module): def __init__(self, use_spectral_norm: bool = False): r"""Initialize the DiscriminatorS module. Args: use_spectral_norm (bool, optional): Whether to use spectral normalization. Defaults to False. """ super().__init__() norm_f = weight_norm if not use_spectral_norm else spectral_norm self.convs = nn.ModuleList( [ norm_f(Conv1d(1, 128, 15, 1, padding=7)), norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ], ) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x: Tensor) -> Tuple[Tensor, List[Tensor]]: r"""Forward pass of the DiscriminatorS module. Args: x (Tensor): The input tensor. Returns: Tuple[Tensor, List[Tensor]]: The output tensor and a list of feature maps. """ fmap = [] for layer in self.convs: x = layer(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiScaleDiscriminator(Module): def __init__(self): r"""Initialize the MultiScaleDiscriminator module.""" super().__init__() self.discriminators = nn.ModuleList( [ DiscriminatorS(use_spectral_norm=True), DiscriminatorS(), DiscriminatorS(), ], ) self.meanpools = nn.ModuleList( [ AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2), ], ) def forward( self, y: Tensor, y_hat: Tensor, ) -> Tuple[ List[Tensor], List[Tensor], List[Tensor], List[Tensor], ]: r"""Forward pass of the MultiScaleDiscriminator module. Args: y (Tensor): The real audio tensor. y_hat (Tensor): The generated audio tensor. Returns: Tuple[List[Tensor], List[Tensor], List[Tensor], List[Tensor]]: A tuple containing lists of discriminator outputs and feature maps for real and generated audio. """ y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, discriminator in enumerate(self.discriminators): if i != 0: y = self.meanpools[i - 1](y) y_hat = self.meanpools[i - 1](y_hat) y_d_r, fmap_r = discriminator(y) y_d_g, fmap_g = discriminator(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs