import unittest import torch from training.loss import SpectralConvergengeLoss class TestSpectralConvergengeLoss(unittest.TestCase): def test_spectral_convergence_loss(self): # Test the spectral convergence loss function with random input tensors loss_fn = SpectralConvergengeLoss() x_mag = torch.randn(4, 100, 513) y_mag = torch.randn(4, 100, 513) * 0.1 loss = loss_fn(x_mag, y_mag) self.assertIsInstance(loss, torch.Tensor) self.assertEqual(loss.shape, torch.Size([])) self.assertGreater(loss, 0.0) def test_spectral_convergence_small_vectors(self): # Test the spectral convergence loss function with non-zero loss loss_fn = SpectralConvergengeLoss() x_mag = torch.tensor([[1, 4, 9, 64], [1, 1, 1, 2]], dtype=torch.float32) y_mag = torch.tensor([[1, 8, 16, 256], [1, 1, 2, 2]], dtype=torch.float32) loss = loss_fn(x_mag, y_mag) self.assertIsInstance(loss, torch.Tensor) self.assertEqual(loss.shape, torch.Size([])) expected = torch.tensor(0.7488) self.assertTrue(torch.allclose(loss, expected, rtol=1e-4, atol=1e-4)) if __name__ == "__main__": unittest.main()