from datetime import datetime import logging import os from lightning.pytorch import Trainer from lightning.pytorch.accelerators import find_usable_cuda_devices # type: ignore from lightning.pytorch.strategies import DDPStrategy import torch from models.tts.delightful_tts.delightful_tts_refined import DelightfulTTS # Node runk in the cluster node_rank = 0 num_nodes = 4 # # Setup of the training cluster os.environ["MASTER_PORT"] = "12355" # # # Change the IP address to the IP address of the master node os.environ["MASTER_ADDR"] = "10.164.0.32" os.environ["WORLD_SIZE"] = f"{num_nodes}" # # # Change the IP address to the IP address of the master node os.environ["NODE_RANK"] = f"{node_rank}" # Get the current date and time now = datetime.now() # Format the current date and time as a string timestamp = now.strftime("%Y%m%d_%H%M%S") # Create a logger logger = logging.getLogger("my_logger") # Set the level of the logger to ERROR logger.setLevel(logging.ERROR) # Create a file handler that logs error messages to a file with the current timestamp in its name handler = logging.FileHandler(f"logs/error_{timestamp}.log") # Create a formatter and add it to the handler formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") handler.setFormatter(formatter) # Add the handler to the logger logger.addHandler(handler) print("usable_cuda_devices: ", find_usable_cuda_devices()) # Set the precision of the matrix multiplication to float32 to improve the performance of the training torch.set_float32_matmul_precision("high") # Root and checkpoint default_root_dir = "logs_new3" ckpt_acoustic = ( "./logs_new3/lightning_logs/version_4/checkpoints/epoch=33-step=4046.ckpt" ) trainer = Trainer( accelerator="cuda", devices=-1, num_nodes=num_nodes, strategy=DDPStrategy( gradient_as_bucket_view=True, find_unused_parameters=True, ), # Save checkpoints to the `default_root_dir` directory default_root_dir=default_root_dir, enable_checkpointing=True, accumulate_grad_batches=5, max_epochs=-1, log_every_n_steps=10, gradient_clip_val=0.5, ) # model = DelightfulTTS() # model = DelightfulTTS(batch_size=10) model = DelightfulTTS.load_from_checkpoint(ckpt_acoustic, strict=False) train_dataloader = model.train_dataloader( root="/dev/shm/", # NOTE: Preload the cached dataset into the RAM cache_dir="/dev/shm/", cache=True, include_libri=False, libri_speakers=[], hifi_speakers=["John Van Stan"], ) trainer.fit( model=model, train_dataloaders=train_dataloader, # Resume training states from the checkpoint file ckpt_path=ckpt_acoustic, )