import unittest import torch from training.loss.metrics import Metrics class TestMetrics(unittest.TestCase): def setUp(self): self.metrics = Metrics() # Set the frequency of the pitch (in Hz) self.pitch_freq = 440.0 self.duration = 1.0 self.sr = 22050 # Generate a time vector for the audio signal self.t = torch.linspace(0, self.duration, int(self.sr * self.duration)) # Generate a sinusoidal waveform with the specified pitch frequency self.audio = torch.sin(2 * torch.pi * self.pitch_freq * self.t).unsqueeze(0) def test_calculate_mcd(self): wav_targets = torch.randn(1, 22050) wav_predictions = torch.randn(1, 22050) mcd = self.metrics.calculate_mcd(wav_targets, wav_predictions) self.assertIsInstance(mcd, torch.Tensor) def test_calculate_spectrogram_distance(self): wav_targets = torch.randn(1, 22050) wav_predictions = torch.randn(1, 22050) dist = self.metrics.calculate_spectrogram_distance(wav_targets, wav_predictions) self.assertIsInstance(dist, torch.Tensor) def test_calculate_f0_rmse(self): wav_targets = torch.randn(1, 22050) wav_predictions = torch.randn(1, 22050) rmse = self.metrics.calculate_f0_rmse(wav_targets, wav_predictions) self.assertIsInstance(rmse, float) def test_calculate_jitter_shimmer(self): jitter, shimmer = self.metrics.calculate_jitter_shimmer(self.audio) self.assertIsInstance(jitter, float) self.assertIsInstance(shimmer, float) def test_wav_metrics(self): ermr, jitter, shimmer = self.metrics.wav_metrics(self.audio) self.assertIsInstance(ermr, float) self.assertIsInstance(jitter, float) self.assertIsInstance(shimmer, float) if __name__ == "__main__": unittest.main()