import unittest import numpy as np import torch from training.tools import pad_1D, pad_2D, pad_3D class TestPad(unittest.TestCase): def test_pad_1D(self): # Test case 1: Pad a list of 1D numpy arrays with different lengths inputs = [torch.tensor([1, 2, 3]), torch.tensor([4, 5]), torch.tensor([6])] expected_output = torch.tensor([[1, 2, 3], [4, 5, 0], [6, 0, 0]]) self.assertTrue(torch.allclose(pad_1D(inputs), expected_output)) # Test case 2: Pad a list of 1D numpy arrays with the same length inputs = [torch.tensor([1, 2, 3]), torch.tensor([4, 5, 6]), torch.tensor([7, 8, 9])] expected_output = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) self.assertTrue(torch.allclose(pad_1D(inputs), expected_output)) # Test case 3: Pad a list of 1D numpy arrays with a non-zero pad value inputs = [torch.tensor([1, 2]), torch.tensor([3, 4, 5]), torch.tensor([6, 7, 8, 9])] expected_output = torch.tensor([[1, 2, 0, 0], [3, 4, 5, 0], [6, 7, 8, 9]]) self.assertTrue(torch.allclose(pad_1D(inputs, pad_value=0.0), expected_output)) # Test case 4: Pad a list of 1D numpy arrays with a non-zero pad value inputs = [torch.tensor([1, 2]), torch.tensor([3, 4, 5]), torch.tensor([6, 7, 8, 9])] expected_output = torch.tensor([[1, 2, 1, 1], [3, 4, 5, 1], [6, 7, 8, 9]]) self.assertTrue(torch.allclose(pad_1D(inputs, pad_value=1.0), expected_output)) # Test case 5: Pad a list of 1D numpy arrays with a single non-empty array inputs = [torch.tensor([1, 2, 3])] expected_output = torch.tensor([[1, 2, 3]]) self.assertTrue(torch.allclose(pad_1D(inputs), expected_output)) def test_pad_2D(self): # Test case 1: Pad a list of 2D numpy arrays with different shapes inputs = [torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6, 7], [8, 9, 10]])] expected_output = torch.tensor([[[1, 2, 0], [3, 4, 0]], [[5, 6, 7], [8, 9, 10]]]) self.assertTrue(torch.allclose(pad_2D(inputs), expected_output)) # Test case 2: Pad a list of 2D numpy arrays with the same shape inputs = [torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6], [7, 8]])] expected_output = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) self.assertTrue(torch.allclose(pad_2D(inputs), expected_output)) # Test case 3: Pad a list of 2D numpy arrays with a non-zero pad value inputs = [torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6, 7], [8, 9, 10]])] expected_output = torch.tensor([[[1, 2, 1], [3, 4, 1]], [[5, 6, 7], [8, 9, 10]]]) self.assertTrue(torch.allclose(pad_2D(inputs, pad_value=1.0), expected_output)) # Test case 4: Pad a list of 2D numpy arrays with a maximum length inputs = [torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6, 7], [8, 9, 10]])] expected_output = torch.tensor([[[1, 2, 0], [3, 4, 0]], [[5, 6, 7], [8, 9, 10]]]) self.assertTrue(torch.allclose(pad_2D(inputs, maxlen=3), expected_output)) # Test case 5: Pad a list of 2D numpy arrays with a single non-empty array inputs = [torch.tensor([[1, 2], [3, 4]])] expected_output = torch.tensor([[[1, 2], [3, 4]]]) self.assertTrue(torch.allclose(pad_2D(inputs), expected_output)) def test_pad_3D(self): # Test case 1: Pad a 3D numpy array with different dimensions inputs = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]]) expected_output = torch.tensor( [ [[1, 2, 0], [3, 4, 0], [0, 0, 0]], [[5, 6, 0], [7, 8, 0], [0, 0, 0]], [[9, 10, 0], [11, 12, 0], [0, 0, 0]], ], ) self.assertTrue(torch.allclose(pad_3D(inputs, B=3, T=3, L=3), expected_output)) # Test case 2: Pad a 3D numpy array with the same dimensions inputs = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]]) expected_output = torch.tensor( [ [[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]], ], ) self.assertTrue(torch.allclose(pad_3D(inputs, B=3, T=2, L=2), expected_output)) # Test case 3: Pad a 3D numpy array with a single element inputs = torch.tensor([[[1, 2], [3, 4]]]) expected_output = torch.tensor([[[1, 2, 0], [3, 4, 0]]]) self.assertTrue(torch.allclose(pad_3D(inputs, B=1, T=2, L=3), expected_output)) # Test case: Pad a list of 3D numpy arrays with different dimensions inputs = [ torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6], [7, 8], [9, 10]]), torch.tensor([[11, 12], [13, 14], [15, 16]]), ] expected_output = torch.tensor( [ [[1, 2, 0], [3, 4, 0], [0, 0, 0], [0, 0, 0]], [[5, 6, 0], [7, 8, 0], [9, 10, 0], [0, 0, 0]], [[11, 12, 0], [13, 14, 0], [15, 16, 0], [0, 0, 0]], ], ) self.assertTrue(torch.allclose(pad_3D(inputs, B=3, T=4, L=3), expected_output)) if __name__ == "__main__": unittest.main()