File size: 13,425 Bytes
a76607e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Gradio app to show the results"""

import os
import tempfile

import gradio as gr
import plotly.express as px
import plotly.graph_objects as go
from processing import load_df
from sanitizer import parse_and_filter


metric_preferences = {
    "cuda_memory_reserved_avg": "lower",
    "cuda_memory_max": "lower",
    "cuda_memory_reserved_99th": "lower",
    "total_time": "lower",
    "train_time": "lower",
    "file_size": "lower",
    "test_accuracy": "higher",
    "train_loss": "lower",
}


def get_model_ids(task_name, df):
    filtered = df[df["task_name"] == task_name]
    return sorted(filtered["model_id"].unique())


def filter_data(task_name, model_id, df):
    filtered = df[(df["task_name"] == task_name) & (df["model_id"] == model_id)]
    return filtered


# Compute the Pareto frontier for two selected metrics.
def compute_pareto_frontier(df, metric_x, metric_y):
    if df.empty:
        return df

    df = df.copy()
    points = df[[metric_x, metric_y]].values
    selected_indices = []

    def dominates(a, b, metric_x, metric_y):
        # Check for each metric whether b is as good or better than a
        if metric_preferences[metric_x] == "higher":
            cond_x = b[0] >= a[0]
            better_x = b[0] > a[0]
        else:
            cond_x = b[0] <= a[0]
            better_x = b[0] < a[0]
        if metric_preferences[metric_y] == "higher":
            cond_y = b[1] >= a[1]
            better_y = b[1] > a[1]
        else:
            cond_y = b[1] <= a[1]
            better_y = b[1] < a[1]
        return cond_x and cond_y and (better_x or better_y)

    for i, point in enumerate(points):
        dominated = False
        for j, other_point in enumerate(points):
            if i == j:
                continue
            if dominates(point, other_point, metric_x, metric_y):
                dominated = True
                break
        if not dominated:
            selected_indices.append(i)
    pareto_df = df.iloc[selected_indices]
    return pareto_df


def generate_pareto_plot(df, metric_x, metric_y):
    if df.empty:
        return {}

    # Compute Pareto frontier and non-frontier points.
    pareto_df = compute_pareto_frontier(df, metric_x, metric_y)
    non_pareto_df = df.drop(pareto_df.index)

    # Create an empty figure.
    fig = go.Figure()

    # Draw the line connecting Pareto frontier points.
    if not pareto_df.empty:
        # Sort the Pareto frontier points by metric_x for a meaningful connection.
        pareto_sorted = pareto_df.sort_values(by=metric_x)
        line_trace = go.Scatter(
            x=pareto_sorted[metric_x],
            y=pareto_sorted[metric_y],
            mode="lines",
            line={"color": "rgba(0,0,255,0.3)", "width": 4},
            name="Pareto Frontier",
        )
        fig.add_trace(line_trace)

    # Add non-frontier points in gray with semi-transparency.
    if not non_pareto_df.empty:
        non_frontier_trace = go.Scatter(
            x=non_pareto_df[metric_x],
            y=non_pareto_df[metric_y],
            mode="markers",
            marker={"color": "rgba(128,128,128,0.5)", "size": 12},
            hoverinfo="text",
            text=non_pareto_df.apply(
                lambda row: f"experiment_name: {row['experiment_name']}<br>"
                f"peft_type: {row['peft_type']}<br>"
                f"{metric_x}: {row[metric_x]}<br>"
                f"{metric_y}: {row[metric_y]}",
                axis=1,
            ),
            showlegend=False,
        )
        fig.add_trace(non_frontier_trace)

    # Add Pareto frontier points with legend
    if not pareto_df.empty:
        pareto_scatter = px.scatter(
            pareto_df,
            x=metric_x,
            y=metric_y,
            color="experiment_name",
            hover_data={"experiment_name": True, "peft_type": True, metric_x: True, metric_y: True},
        )
        for trace in pareto_scatter.data:
            trace.marker = {"size": 12}
            fig.add_trace(trace)

    # Update layout with axes labels.
    fig.update_layout(
        title=f"Pareto Frontier for {metric_x} vs {metric_y}",
        template="seaborn",
        height=700,
        autosize=True,
        xaxis_title=metric_x,
        yaxis_title=metric_y,
    )

    return fig


def compute_pareto_summary(filtered, pareto_df, metric_x, metric_y):
    if filtered.empty:
        return "No data available."

    stats = filtered[[metric_x, metric_y]].agg(["min", "max", "mean"]).to_string()
    total_points = len(filtered)
    pareto_points = len(pareto_df)
    excluded_points = total_points - pareto_points
    summary_text = (
        f"{stats}\n\n"
        f"Total points: {total_points}\n"
        f"Pareto frontier points: {pareto_points}\n"
        f"Excluded points: {excluded_points}"
    )
    return summary_text


def export_csv(df):
    if df.empty:
        return None
    csv_data = df.to_csv(index=False)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w", encoding="utf-8") as tmp:
        tmp.write(csv_data)
        tmp_path = tmp.name
    return tmp_path


def build_app(df):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# PEFT method comparison")
        gr.Markdown(
            "Find more information [on the PEFT GitHub repo](https://github.com/huggingface/peft/tree/main/method_comparison)"
        )

        # Hidden state to store the current filter query.
        filter_state = gr.State("")

        gr.Markdown("## Choose the task and base model")
        with gr.Row():
            task_dropdown = gr.Dropdown(
                label="Select Task",
                choices=sorted(df["task_name"].unique()),
                value=sorted(df["task_name"].unique())[0],
            )
            model_dropdown = gr.Dropdown(
                label="Select Model ID", choices=get_model_ids(sorted(df["task_name"].unique())[0], df)
            )

        data_table = gr.DataFrame(label="Results", value=df, interactive=False)

        with gr.Row():
            filter_textbox = gr.Textbox(
                label="Filter DataFrame",
                placeholder="Enter filter (e.g.: peft_type=='LORA')",
                interactive=True,
            )
            apply_filter_button = gr.Button("Apply Filter")
            reset_filter_button = gr.Button("Reset Filter")

        gr.Markdown("## Pareto plot")
        gr.Markdown(
            "Select 2 criteria to plot the Pareto frontier. This will show the best PEFT methods along this axis and "
            "the trade-offs with the other axis. The PEFT methods that Pareto-dominate are shown in colors. All other "
            "methods are inferior with regard to these two metrics. Hover over a point to show details."
        )

        with gr.Row():
            x_default = (
                "cuda_memory_max" if "cuda_memory_max" in metric_preferences else list(metric_preferences.keys())[0]
            )
            y_default = (
                "test_accuracy" if "test_accuracy" in metric_preferences else list(metric_preferences.keys())[1]
            )
            metric_x_dropdown = gr.Dropdown(
                label="1st metric for Pareto plot",
                choices=list(metric_preferences.keys()),
                value=x_default,
            )
            metric_y_dropdown = gr.Dropdown(
                label="2nd metric for Pareto plot",
                choices=list(metric_preferences.keys()),
                value=y_default,
            )

        pareto_plot = gr.Plot(label="Pareto Frontier Plot")
        summary_box = gr.Textbox(label="Summary Statistics", lines=6)
        csv_output = gr.File(label="Export Filtered Data as CSV")

        def update_on_task(task_name, current_filter):
            new_models = get_model_ids(task_name, df)
            filtered = filter_data(task_name, new_models[0] if new_models else "", df)
            if current_filter.strip():
                try:
                    mask = parse_and_filter(filtered, current_filter)
                    df_queried = filtered[mask]
                    if not df_queried.empty:
                        filtered = df_queried
                except Exception:
                    # invalid filter query
                    pass
            return gr.update(choices=new_models, value=new_models[0] if new_models else None), filtered

        task_dropdown.change(
            fn=update_on_task, inputs=[task_dropdown, filter_state], outputs=[model_dropdown, data_table]
        )

        def update_on_model(task_name, model_id, current_filter):
            filtered = filter_data(task_name, model_id, df)
            if current_filter.strip():
                try:
                    mask = parse_and_filter(filtered, current_filter)
                    filtered = filtered[mask]
                except Exception:
                    pass
            return filtered

        model_dropdown.change(
            fn=update_on_model, inputs=[task_dropdown, model_dropdown, filter_state], outputs=data_table
        )

        def update_pareto_plot_and_summary(task_name, model_id, metric_x, metric_y, current_filter):
            filtered = filter_data(task_name, model_id, df)
            if current_filter.strip():
                try:
                    mask = parse_and_filter(filtered, current_filter)
                    filtered = filtered[mask]
                except Exception as e:
                    return generate_pareto_plot(filtered, metric_x, metric_y), f"Filter error: {e}"

            pareto_df = compute_pareto_frontier(filtered, metric_x, metric_y)
            fig = generate_pareto_plot(filtered, metric_x, metric_y)
            summary = compute_pareto_summary(filtered, pareto_df, metric_x, metric_y)
            return fig, summary

        for comp in [model_dropdown, metric_x_dropdown, metric_y_dropdown]:
            comp.change(
                fn=update_pareto_plot_and_summary,
                inputs=[task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown, filter_state],
                outputs=[pareto_plot, summary_box],
            )

        def apply_filter(filter_query, task_name, model_id, metric_x, metric_y):
            filtered = filter_data(task_name, model_id, df)
            if filter_query.strip():
                try:
                    mask = parse_and_filter(filtered, filter_query)
                    filtered = filtered[mask]
                except Exception as e:
                    # Update the table, plot, and summary even if there is a filter error.
                    return (
                        filter_query,
                        filtered,
                        generate_pareto_plot(filtered, metric_x, metric_y),
                        f"Filter error: {e}",
                    )

            pareto_df = compute_pareto_frontier(filtered, metric_x, metric_y)
            fig = generate_pareto_plot(filtered, metric_x, metric_y)
            summary = compute_pareto_summary(filtered, pareto_df, metric_x, metric_y)
            return filter_query, filtered, fig, summary

        apply_filter_button.click(
            fn=apply_filter,
            inputs=[filter_textbox, task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown],
            outputs=[filter_state, data_table, pareto_plot, summary_box],
        )

        def reset_filter(task_name, model_id, metric_x, metric_y):
            filtered = filter_data(task_name, model_id, df)
            pareto_df = compute_pareto_frontier(filtered, metric_x, metric_y)
            fig = generate_pareto_plot(filtered, metric_x, metric_y)
            summary = compute_pareto_summary(filtered, pareto_df, metric_x, metric_y)
            # Return empty strings to clear the filter state and textbox.
            return "", "", filtered, fig, summary

        reset_filter_button.click(
            fn=reset_filter,
            inputs=[task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown],
            outputs=[filter_state, filter_textbox, data_table, pareto_plot, summary_box],
        )

        gr.Markdown("## Export data")
        # Export button for CSV download.
        export_button = gr.Button("Export Filtered Data")
        export_button.click(
            fn=lambda task, model: export_csv(filter_data(task, model, df)),
            inputs=[task_dropdown, model_dropdown],
            outputs=csv_output,
        )

        demo.load(
            fn=update_pareto_plot_and_summary,
            inputs=[task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown, filter_state],
            outputs=[pareto_plot, summary_box],
        )

    return demo


path = os.path.join(os.path.dirname(__file__), "MetaMathQA", "results")
df = load_df(path, task_name="MetaMathQA")
demo = build_app(df)
demo.launch()