File size: 5,378 Bytes
a76607e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Data processing used for analyzing and presenting the results"""

import json
import os

import pandas as pd


def preprocess(rows, task_name: str, print_fn=print):
    results = []
    skipped = 0
    for row in rows:
        run_info = row["run_info"]
        train_info = row["train_info"]
        meta_info = row["meta_info"]
        if run_info["peft_config"]:
            peft_type = run_info["peft_config"]["peft_type"]
        else:
            peft_type = "full-finetuning"
        if train_info["status"] != "success":
            skipped += 1
            continue

        train_metrics = train_info["metrics"][-1]

        # extract the fields that make most sense
        dct = {
            "task_name": task_name,
            "experiment_name": run_info["experiment_name"],
            "model_id": run_info["train_config"]["model_id"],
            "train_config": run_info["train_config"],
            "peft_type": peft_type,
            "peft_config": run_info["peft_config"],
            "cuda_memory_reserved_avg": train_info["cuda_memory_reserved_avg"],
            "cuda_memory_max": train_info["cuda_memory_max"],
            "cuda_memory_reserved_99th": train_info["cuda_memory_reserved_99th"],
            "total_time": run_info["total_time"],
            "train_time": train_info["train_time"],
            "file_size": train_info["file_size"],
            "test_accuracy": train_metrics["test accuracy"],
            "train_loss": train_metrics["train loss"],
            "train_samples": train_metrics["train samples"],
            "train_total_tokens": train_metrics["train total tokens"],
            "peft_version": meta_info["package_info"]["peft-version"],
            "peft_branch": run_info["peft_branch"],
            "transformers_version": meta_info["package_info"]["transformers-version"],
            "datasets_version": meta_info["package_info"]["datasets-version"],
            "torch_version": meta_info["package_info"]["torch-version"],
            "bitsandbytes_version": meta_info["package_info"]["bitsandbytes-version"],
            "package_info": meta_info["package_info"],
            "system_info": meta_info["system_info"],
            "created_at": run_info["created_at"],
        }
        results.append(dct)

    if skipped:
        print_fn(f"Skipped {skipped} of {len(rows)} entries because the train status != success")

    return results


def load_jsons(path):
    results = []
    for fn in os.listdir(path):
        if fn.endswith(".json"):
            with open(os.path.join(path, fn)) as f:
                row = json.load(f)
                results.append(row)
    return results


def load_df(path, task_name, print_fn=print):
    jsons = load_jsons(path)
    preprocessed = preprocess(jsons, task_name=task_name, print_fn=print_fn)
    dtype_dict = {
        "task_name": "string",
        "experiment_name": "string",
        "model_id": "string",
        "train_config": "string",
        "peft_type": "string",
        "peft_config": "string",
        "cuda_memory_reserved_avg": int,
        "cuda_memory_max": int,
        "cuda_memory_reserved_99th": int,
        "total_time": float,
        "train_time": float,
        "file_size": int,
        "test_accuracy": float,
        "train_loss": float,
        "train_samples": int,
        "train_total_tokens": int,
        "peft_version": "string",
        "peft_branch": "string",
        "transformers_version": "string",
        "datasets_version": "string",
        "torch_version": "string",
        "bitsandbytes_version": "string",
        "package_info": "string",
        "system_info": "string",
        "created_at": "string",
    }
    df = pd.DataFrame(preprocessed)
    df = df.astype(dtype_dict)
    df["created_at"] = pd.to_datetime(df["created_at"])
    # round training time to nearest second
    df["train_time"] = df["train_time"].round().astype(int)
    df["total_time"] = df["total_time"].round().astype(int)

    # reorder columns for better viewing, pinned_columns arg in Gradio seems not to work correctly
    important_columns = [
        "experiment_name",
        "peft_type",
        "total_time",
        "train_time",
        "test_accuracy",
        "train_loss",
        "cuda_memory_max",
        "cuda_memory_reserved_99th",
        "cuda_memory_reserved_avg",
        "file_size",
        "created_at",
        "task_name",
    ]
    other_columns = [col for col in df if col not in important_columns]
    df = df[important_columns + other_columns]

    size_before_drop_dups = len(df)
    columns = ["experiment_name", "model_id", "peft_type", "created_at"]
    # we want to keep only the most recent run for each experiment
    df = df.sort_values("created_at").drop_duplicates(columns, keep="last")
    return df