github-actions[bot]
🚀 Deploy method comparison app from GH action
a76607e
raw
history blame
17.8 kB
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Main entry point to run the experiments. Contains general setup and the proper training code.
"""
import argparse
import datetime as dt
import gc
import json
import os
import random
import sys
import textwrap
import time
from contextlib import ContextManager, nullcontext
from functools import partial
from typing import Any, Callable, Literal, Optional
import torch
from torch import nn
from torch.amp import GradScaler, autocast
from tqdm import tqdm
from transformers import GenerationConfig, set_seed
from utils import (
FILE_NAME_TRAIN_PARAMS,
BucketIterator,
TrainResult,
TrainStatus,
get_accuracy,
get_base_model_info,
get_dataset_info,
get_file_size,
get_model,
get_optimizer_and_scheduler,
get_peft_branch,
get_tokenizer,
get_train_config,
init_cuda,
log_results,
validate_experiment_path,
)
from data import get_train_valid_test_datasets
from peft import AdaLoraConfig, PeftConfig
from peft.utils import CONFIG_NAME
# # suppress all warnings
# warnings.filterwarnings("ignore") # FIXME?
dtype_to_bytes_linear = {"float32": 4, "float16": 2, "bfloat16": 2, "int8": 1, "int4": 0.5}
# if lr scheduler with warmup is used, the ratio of warmup steps to total steps
BUCKET_FACTOR = 20 # number of batches per bucket, increasing this further has diminishing returns
def get_generation_config(*, seq_len, generate_kwargs) -> GenerationConfig:
# filter out None values so that we don't depend on setting correct defaults in the config
generation_kwargs = {k: v for k, v in generate_kwargs.items() if v is not None}
if ("max_length" in generation_kwargs) and ("max_new_tokens" in generation_kwargs):
# transformers does not support setting both max_length and max_new_tokens, but what we want in this case is to
# take the smaller of the two values
new_max_length = min(generation_kwargs["max_new_tokens"] + seq_len, generation_kwargs["max_length"])
del generation_kwargs["max_new_tokens"]
generation_kwargs["max_length"] = new_max_length
generation_config = GenerationConfig(**generate_kwargs)
return generation_config
def evaluate(model, tokenizer, ds, batch_size, generate_kwargs, use_tqdm: bool = False) -> tuple[list[str], list[str]]:
with torch.inference_mode():
predictions = []
responses = []
pbar = range(0, len(ds), batch_size)
if use_tqdm:
pbar = tqdm(pbar)
for j in pbar:
sliced = ds[j : j + batch_size]
responses += sliced.pop("response")
batch = tokenizer.pad(sliced, return_tensors="pt", padding_side="left").to(model.device)
seq_len = batch["input_ids"].shape[1]
generation_config = get_generation_config(seq_len=seq_len, generate_kwargs=generate_kwargs)
outputs = model.generate(**batch, generation_config=generation_config, pad_token_id=tokenizer.eos_token_id)
predictions += tokenizer.batch_decode(outputs, skip_special_tokens=True)
return predictions, responses
class DummyGradScaler:
# if no mixed precision is being used
def scale(self, loss):
return loss
def unscale_(self, optimizer):
pass
def step(self, optimizer):
optimizer.step()
def update(self):
pass
def train(
*,
model: nn.Module,
max_steps: int,
batch_size: int,
batch_size_eval: int,
tokenizer: Any,
cuda_memory_init: int,
eval_steps: int,
generation_kwargs: dict[str, Any],
grad_norm_clip: float,
optimizer_type: str,
optimizer_kwargs: dict[str, Any],
query_template: str,
lr_scheduler_arg: Optional[Literal["cosine"]],
use_amp: bool,
is_adalora: bool,
) -> TrainResult:
cuda_memory_allocated_log = []
cuda_memory_reserved_log = []
losses = []
durations = []
metrics = []
sample = 0 # keep count of the current sample
total_samples = 0 # total number of samples over all epochs
total_tokens = [] # total number of tokens over all epochs
if use_amp:
grad_scaler: GradScaler | DummyGradScaler = GradScaler(device="cuda")
autocast_ctx: Callable[[], ContextManager[Any]] = partial(autocast, device_type="cuda")
else:
grad_scaler = DummyGradScaler()
autocast_ctx = nullcontext
optimizer, lr_scheduler = get_optimizer_and_scheduler(
model,
optimizer_type=optimizer_type,
max_steps=max_steps,
lr_scheduler_arg=lr_scheduler_arg,
**optimizer_kwargs,
)
# print this after getting the optimizer, in case it modifies requires_gard
if hasattr(model, "get_nb_trainable_parameters"):
num_trainable_params, num_params = model.get_nb_trainable_parameters()
else:
num_params = model.num_parameters()
num_trainable_params = num_params
print_verbose(
f"trainable params: {num_trainable_params:,d} || all params: {num_params:,d} || "
f"trainable: {100 * num_trainable_params / num_params:.4f}%"
)
status = TrainStatus.FAILED
tic_train = time.perf_counter()
eval_time = 0.0
error_msg = ""
ds_train, ds_valid, ds_test = get_train_valid_test_datasets(
tokenizer=tokenizer, query_template=query_template, print_fn=print_verbose
)
# note: bucketing by length is only really worth it for the train dataset, since it's length is big compared to the
# batch size
iterator_train = BucketIterator(
ds_train,
batch_size=batch_size,
bucket_factor=BUCKET_FACTOR,
delete_cols=["response"],
)
try:
pbar = tqdm(range(1, max_steps + 1))
for step, batch in zip(pbar, iterator_train):
tic = time.perf_counter()
# create the batch
tokens_per_sample = [len(i) for i in batch["input_ids"]]
total_tokens.append(sum(tokens_per_sample) + len(tokens_per_sample)) # add EOS token
batch = tokenizer.pad(batch, return_tensors="pt").to(model.device)
actual_batch_size = len(batch["input_ids"])
total_samples += actual_batch_size
sample += batch_size
if sample >= len(ds_train): # new epoch
sample = 0
# add labels, they are automatically shifted by transformers
labels = batch["input_ids"].clone()
# We want to ignore the padding tokens except for the first EOS token; if we don't ignore them, the loss
# will be dominated by padding tokens; if we ignore all, the model will not learn to predict the EOS token.
# TODO: Note that the longest sequence in the batch won't have any PAD/EOS token at the end, this is fine if
# the batch size is > 1 but should still be fixed eventually.
for i, num_tokens in enumerate(tokens_per_sample):
labels[i, num_tokens + 1 :] = -100
batch["labels"] = labels
num_items_in_batch = batch["attention_mask"].sum().item()
# train step
optimizer.zero_grad()
with autocast_ctx():
outputs = model(**batch, num_items_in_batch=num_items_in_batch)
loss = outputs.loss
grad_scaler.scale(loss).backward()
if grad_norm_clip:
grad_scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_norm_clip)
grad_scaler.step(optimizer)
grad_scaler.update()
lr_scheduler.step()
if is_adalora:
model.base_model.update_and_allocate(step)
losses.append(loss.item())
pbar.set_postfix({"loss": loss.item()})
cuda_memory_allocated_log.append(torch.cuda.memory_allocated() - cuda_memory_init)
cuda_memory_reserved_log.append(torch.cuda.memory_reserved() - cuda_memory_init)
toc = time.perf_counter()
durations.append(toc - tic)
# every couple of steps, evaluate; this can be slow due to generation
if step % eval_steps == 0:
tic_eval = time.perf_counter()
loss_avg = sum(losses[-eval_steps:]) / eval_steps
memory_allocated_avg = sum(cuda_memory_allocated_log[-eval_steps:]) / eval_steps
memory_reserved_avg = sum(cuda_memory_reserved_log[-eval_steps:]) / eval_steps
token_sum = sum(total_tokens[-eval_steps:])
dur_train = sum(durations[-eval_steps:])
tokens_per_sec = token_sum / dur_train
model.eval()
predictions, responses = evaluate(
model=model,
tokenizer=tokenizer,
ds=ds_valid,
batch_size=batch_size_eval,
generate_kwargs={**generation_kwargs},
)
model.train()
example = random.choice(predictions)
example = textwrap.shorten(example, width=750)
example = textwrap.indent(example, " ")
print_verbose(f"\nExample prediction:\n{example}\n")
accuracy = get_accuracy(predictions=predictions, responses=responses)
num_tokens_generated = sum(sum(mask) for mask in tokenizer(predictions)["attention_mask"])
toc_eval = time.perf_counter()
dur_eval = toc_eval - tic_eval
eval_time += toc_eval - tic_eval
elapsed = time.perf_counter() - tic_train
metrics.append(
{
"step": step,
"valid accuracy": accuracy,
"train loss": loss_avg,
"train samples": total_samples,
"train time": dur_train,
"eval time": dur_eval,
"tokens / sec": tokens_per_sec,
"mem allocated avg": memory_allocated_avg,
"mem reserved avg": memory_reserved_avg,
"elapsed time": elapsed,
}
)
log_dict = {
"step": f"{step:5d}",
"samples": f"{total_samples:7d}",
"lr": f"{lr_scheduler.get_last_lr()[0]:.2e}",
"loss avg": f"{loss_avg:.4f}",
"valid acc": f"{accuracy:.3f}",
"gen valid tokens": num_tokens_generated,
"train time": f"{dur_train:.1f}s",
"eval time": f"{dur_eval:.1f}s",
"train tokens / sec": f"{tokens_per_sec:.0f}",
"mem allocated": f"{memory_allocated_avg:.0f}",
"mem reserved": f"{memory_reserved_avg:.0f}",
"elapsed time": f"{elapsed // 60:.0f}min {elapsed % 60:.0f}s",
}
print_verbose(json.dumps(log_dict))
# # TODO is this needed?
torch.cuda.empty_cache()
gc.collect()
print_verbose(f"Training finished after {max_steps} steps, evaluation on test set follows.")
# test set evaluation
model.eval()
predictions, responses = evaluate(
model=model,
tokenizer=tokenizer,
ds=ds_test,
batch_size=batch_size_eval,
generate_kwargs={**generation_kwargs, "pad_token_id": tokenizer.eos_token_id},
use_tqdm=len(ds_test) > 100,
)
accuracy = get_accuracy(predictions=predictions, responses=responses)
metrics.append(
{
"step": step,
"test accuracy": accuracy,
"train loss": sum(losses[-eval_steps:]) / eval_steps,
"train samples": total_samples,
"train total tokens": sum(total_tokens),
}
)
print_verbose(f"Test accuracy: {accuracy:.3f}")
except KeyboardInterrupt:
print_verbose("canceled training")
status = TrainStatus.CANCELED
error_msg = "manually canceled"
except torch.OutOfMemoryError as exc:
# ouch, still let's try to log some results
print_verbose("out of memory error encountered")
status = TrainStatus.CANCELED
error_msg = str(exc)
except Exception as exc:
print_verbose(f"encountered an error: {exc}")
status = TrainStatus.CANCELED
error_msg = str(exc)
toc_train = time.perf_counter()
train_time = toc_train - tic_train - eval_time
if status != TrainStatus.CANCELED:
status = TrainStatus.SUCCESS
train_result = TrainResult(
status=status,
train_time=train_time,
cuda_memory_reserved_log=cuda_memory_reserved_log,
losses=losses,
metrics=metrics,
error_msg=error_msg,
num_trainable_params=num_trainable_params,
num_total_params=num_params,
)
return train_result
def main(*, path_experiment: str, experiment_name: str, clean: bool) -> None:
tic_total = time.perf_counter()
start_date = dt.datetime.now(tz=dt.timezone.utc).replace(microsecond=0).isoformat()
peft_branch = get_peft_branch()
if peft_branch == "main":
print_verbose("===== This experiment is categorized as a MAIN run because the PEFT branch is 'main' ======")
else:
print_verbose(
f"===== This experiment is categorized as a TEST run because the PEFT branch is '{peft_branch}' ======"
)
# load configs
peft_config: Optional[PeftConfig] = None
if os.path.exists(os.path.join(path_experiment, CONFIG_NAME)):
peft_config = PeftConfig.from_pretrained(path_experiment)
else:
print_verbose(f"Could not find PEFT config at {path_experiment}, performing FULL FINETUNING")
path_train_config = os.path.join(path_experiment, FILE_NAME_TRAIN_PARAMS)
train_config = get_train_config(path_train_config)
set_seed(train_config.seed)
# initialize objects
cuda_memory_init = init_cuda()
tokenizer = get_tokenizer(model_id=train_config.model_id, max_seq_length=train_config.max_seq_length)
model_info = get_base_model_info(train_config.model_id)
metamath_info = get_dataset_info("meta-math/MetaMathQA")
gsm8k_info = get_dataset_info("openai/gsm8k")
model = get_model(
model_id=train_config.model_id,
dtype=train_config.dtype,
compile=train_config.compile,
attn_implementation=train_config.attn_implementation,
peft_config=peft_config,
autocast_adapter_dtype=train_config.autocast_adapter_dtype,
)
print_verbose(model)
# train model
train_result = train(
model=model,
max_steps=train_config.max_steps,
batch_size=train_config.batch_size,
batch_size_eval=train_config.batch_size_eval,
tokenizer=tokenizer,
cuda_memory_init=cuda_memory_init,
eval_steps=train_config.eval_steps,
generation_kwargs=train_config.generation_kwargs,
grad_norm_clip=train_config.grad_norm_clip,
optimizer_type=train_config.optimizer_type,
optimizer_kwargs=train_config.optimizer_kwargs,
query_template=train_config.query_template,
lr_scheduler_arg=train_config.lr_scheduler,
use_amp=train_config.use_amp,
is_adalora=isinstance(peft_config, AdaLoraConfig),
)
if train_result.status == TrainStatus.FAILED:
print_verbose("Training failed, not logging results")
sys.exit(1)
file_size = get_file_size(
model,
peft_config=peft_config,
clean=clean,
print_fn=print_verbose,
)
time_total = time.perf_counter() - tic_total
# log results: print and save to file
log_results(
experiment_name=experiment_name,
train_result=train_result,
cuda_memory_init=cuda_memory_init,
time_total=time_total,
file_size=file_size,
model_info=model_info,
datasets_info={"metamath": metamath_info, "gsm8k": gsm8k_info},
start_date=start_date,
train_config=train_config,
peft_config=peft_config,
print_fn=print_verbose,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-v", "--verbose", action="store_true", help="Enable verbose output")
parser.add_argument("path_experiment", type=str, help="Path to the experiment directory")
parser.add_argument(
"--clean",
action="store_true",
help="Delete training artifacts after run finishes (logs are still saved)",
)
args = parser.parse_args()
experiment_name = validate_experiment_path(args.path_experiment)
if args.verbose:
def print_verbose(*args, **kwargs) -> None:
kwargs["file"] = sys.stderr
print(*args, **kwargs)
else:
def print_verbose(*args, **kwargs) -> None:
pass
main(
path_experiment=args.path_experiment,
experiment_name=experiment_name,
clean=args.clean,
)