|
import ast |
|
|
|
import pandas as pd |
|
|
|
|
|
def _evaluate_node(df, node): |
|
""" |
|
Recursively evaluates an AST node to generate a pandas boolean mask. |
|
""" |
|
|
|
if isinstance(node, ast.Compare): |
|
if not isinstance(node.left, ast.Name): |
|
raise ValueError("Left side of comparison must be a column name.") |
|
col = node.left.id |
|
if col not in df.columns: |
|
raise ValueError(f"Column '{col}' not found in DataFrame.") |
|
|
|
if len(node.ops) > 1: |
|
raise ValueError("Chained comparisons like '10 < price < 100' are not supported.") |
|
|
|
op_node = node.ops[0] |
|
val_node = node.comparators[0] |
|
try: |
|
value = ast.literal_eval(val_node) |
|
except ValueError: |
|
raise ValueError("Right side of comparison must be a literal (number, string, list).") |
|
|
|
operator_map = { |
|
ast.Gt: lambda c, v: df[c] > v, |
|
ast.GtE: lambda c, v: df[c] >= v, |
|
ast.Lt: lambda c, v: df[c] < v, |
|
ast.LtE: lambda c, v: df[c] <= v, |
|
ast.Eq: lambda c, v: df[c] == v, |
|
ast.NotEq: lambda c, v: df[c] != v, |
|
ast.In: lambda c, v: df[c].isin(v), |
|
ast.NotIn: lambda c, v: ~df[c].isin(v) |
|
} |
|
op_type = type(op_node) |
|
if op_type not in operator_map: |
|
raise ValueError(f"Unsupported operator '{op_type.__name__}'.") |
|
return operator_map[op_type](col, value) |
|
|
|
|
|
elif isinstance(node, ast.BinOp): |
|
if isinstance(node.op, ast.BitOr): |
|
return _evaluate_node(df, node.left) | _evaluate_node(df, node.right) |
|
elif isinstance(node.op, ast.BitAnd): |
|
return _evaluate_node(df, node.left) & _evaluate_node(df, node.right) |
|
|
|
|
|
elif isinstance(node, ast.BoolOp): |
|
op_type = type(node.op) |
|
|
|
result = _evaluate_node(df, node.values[0]) |
|
|
|
for i in range(1, len(node.values)): |
|
if op_type is ast.And or op_type is ast.BitAnd: |
|
result &= _evaluate_node(df, node.values[i]) |
|
elif op_type is ast.Or or op_type is ast.BitOr: |
|
result |= _evaluate_node(df, node.values[i]) |
|
return result |
|
|
|
elif isinstance(node, ast.UnaryOp): |
|
if not isinstance(node.op, ast.Not): |
|
raise ValueError("Only supported unary op is negation.") |
|
return ~_evaluate_node(df, node.operand) |
|
|
|
|
|
else: |
|
raise ValueError(f"Unsupported expression type: {type(node).__name__}") |
|
|
|
|
|
def parse_and_filter(df, filter_str): |
|
""" |
|
Filters a pandas DataFrame using a string expression parsed by AST. |
|
This is done to avoid the security vulnerables that `DataFrame.query` |
|
brings (arbitrary code execution). |
|
|
|
Args: |
|
df (pd.DataFrame): The DataFrame to filter. |
|
filter_str (str): A string representing a filter expression. |
|
e.g., "price > 100 and stock < 50" |
|
Supported operators: >, >=, <, <=, ==, !=, in, not in, and, or. |
|
|
|
Returns: |
|
pd.Series: A boolean Series representing the filter mask. |
|
""" |
|
if not filter_str: |
|
return pd.Series([True] * len(df), index=df.index) |
|
|
|
try: |
|
|
|
tree = ast.parse(filter_str, mode='eval') |
|
expression_node = tree.body |
|
except (SyntaxError, ValueError) as e: |
|
raise ValueError(f"Invalid filter syntax: {e}") |
|
|
|
|
|
mask = _evaluate_node(df, expression_node) |
|
return mask |
|
|