Spaces:
Sleeping
Sleeping
File size: 14,551 Bytes
60b1427 65d5daa 60b1427 b7bd5a2 1229bf2 60b1427 b7bd5a2 957d2c2 b7bd5a2 957d2c2 1bd8049 1229bf2 b7bd5a2 dde1577 b7bd5a2 957d2c2 b7bd5a2 1bd8049 957d2c2 dde1577 1bd8049 1229bf2 b7bd5a2 dde1577 b7bd5a2 957d2c2 b7bd5a2 1bd8049 957d2c2 1bd8049 b7bd5a2 1bd8049 60b1427 b7bd5a2 60b1427 b7bd5a2 60b1427 6cd4890 60b1427 d16f597 60b1427 6cd4890 b7bd5a2 d16f597 b7bd5a2 d16f597 60b1427 b7bd5a2 60b1427 b7bd5a2 60b1427 b7bd5a2 60b1427 2c2de78 60b1427 b7bd5a2 60b1427 6cd4890 60b1427 b7bd5a2 1229bf2 b7bd5a2 1229bf2 b7bd5a2 1229bf2 b7bd5a2 60b1427 b7bd5a2 1229bf2 b7bd5a2 60b1427 b7bd5a2 60b1427 b7bd5a2 60b1427 b7bd5a2 1229bf2 b7bd5a2 60b1427 86deaaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import streamlit as st
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from peft import PeftModel
from text_processing import TextProcessor
import gc
from pathlib import Path
# Configure page
st.set_page_config(
page_title="Biomedical Papers Analysis",
page_icon="π¬",
layout="wide"
)
# Initialize session state
if 'processed_data' not in st.session_state:
st.session_state.processed_data = None
if 'summaries' not in st.session_state:
st.session_state.summaries = None
if 'text_processor' not in st.session_state:
st.session_state.text_processor = None
if 'processing_started' not in st.session_state:
st.session_state.processing_started = False
if 'focused_summary_generated' not in st.session_state:
st.session_state.focused_summary_generated = False
def load_model(model_type):
"""Load appropriate model based on type with proper memory management"""
try:
# Clear any existing cached data
torch.cuda.empty_cache()
gc.collect()
if model_type == "summarize":
base_model = AutoModelForSeq2SeqLM.from_pretrained(
"facebook/bart-large-cnn",
cache_dir="./models",
low_cpu_mem_usage=True,
torch_dtype=torch.float32
)
model = PeftModel.from_pretrained(
base_model,
"pendar02/results",
device_map="auto",
torch_dtype=torch.float32
)
tokenizer = AutoTokenizer.from_pretrained(
"facebook/bart-large-cnn",
cache_dir="./models"
)
else: # question_focused
base_model = AutoModelForSeq2SeqLM.from_pretrained(
"GanjinZero/biobart-base",
cache_dir="./models",
low_cpu_mem_usage=True,
torch_dtype=torch.float32
)
model = PeftModel.from_pretrained(
base_model,
"pendar02/biobart-finetune",
device_map="auto",
torch_dtype=torch.float32
)
tokenizer = AutoTokenizer.from_pretrained(
"GanjinZero/biobart-base",
cache_dir="./models"
)
model.eval()
return model, tokenizer
except Exception as e:
st.error(f"Error loading model: {str(e)}")
raise
def cleanup_model(model, tokenizer):
"""Properly cleanup model resources"""
try:
del model
del tokenizer
torch.cuda.empty_cache()
gc.collect()
except Exception:
pass
@st.cache_data
def process_excel(uploaded_file):
"""Process uploaded Excel file"""
try:
df = pd.read_excel(uploaded_file)
required_columns = ['Abstract', 'Article Title', 'Authors',
'Source Title', 'Publication Year', 'DOI']
# Check required columns
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Missing required columns: {', '.join(missing_columns)}")
return None
return df[required_columns]
except Exception as e:
st.error(f"Error processing file: {str(e)}")
return None
def preprocess_text(text):
"""Preprocess text to add appropriate formatting before summarization"""
if not isinstance(text, str) or not text.strip():
return text
# Split text into sentences (basic implementation)
sentences = [s.strip() for s in text.replace('. ', '.\n').split('\n')]
# Remove empty sentences
sentences = [s for s in sentences if s]
# Join with proper line breaks
formatted_text = '\n'.join(sentences)
return formatted_text
def generate_summary(text, model, tokenizer):
"""Generate summary for single abstract"""
if not isinstance(text, str) or not text.strip():
return "No abstract available to summarize."
# Check if abstract is too short
word_count = len(text.split())
if word_count < 50: # Threshold for "short" abstracts
return text # Return original text for very short abstracts
# Preprocess the text first
formatted_text = preprocess_text(text)
# Adjust generation parameters based on input length
max_length = min(150, word_count + 50) # Dynamic max length
min_length = min(50, word_count) # Dynamic min length
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": max_length,
"min_length": min_length,
"num_beams": 4,
"length_penalty": 2.0,
"early_stopping": True,
"no_repeat_ngram_size": 3 # Prevent repetition of phrases
}
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Post-process summary
if summary.lower() == text.lower() or len(summary.split()) / word_count > 0.9:
return text # Return original if summary is too similar
return summary
def generate_focused_summary(question, abstracts, model, tokenizer):
"""Generate focused summary based on question"""
# Preprocess each abstract
formatted_abstracts = [preprocess_text(abstract) for abstract in abstracts]
combined_input = f"Question: {question} Abstracts: " + " [SEP] ".join(formatted_abstracts)
inputs = tokenizer(combined_input, return_tensors="pt", max_length=1024, truncation=True)
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": 200,
"min_length": 50,
"num_beams": 4,
"length_penalty": 2.0,
"early_stopping": True
}
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def main():
st.title("π¬ Biomedical Papers Analysis")
# File upload section
uploaded_file = st.file_uploader(
"Upload Excel file containing papers",
type=['xlsx', 'xls'],
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
)
# Question input - moved up but hidden initially
question_container = st.empty()
question = ""
if uploaded_file is not None:
# Process Excel file
if st.session_state.processed_data is None:
with st.spinner("Processing file..."):
df = process_excel(uploaded_file)
if df is not None:
st.session_state.processed_data = df.dropna(subset=["Abstract"])
if st.session_state.processed_data is not None:
df = st.session_state.processed_data
st.write(f"π Loaded {len(df)} papers with abstracts")
# Get question before processing
with question_container:
question = st.text_input(
"Enter your research question (optional):",
help="If provided, a question-focused summary will be generated after individual summaries"
)
# Single button for both processes
if not st.session_state.get('processing_started', False):
if st.button("Start Analysis"):
st.session_state.processing_started = True
# Show processing status and results
if st.session_state.get('processing_started', False):
# Individual Summaries Section
st.header("π Individual Paper Summaries")
if st.session_state.summaries is None:
try:
with st.spinner("Generating summaries..."):
# Load summarization model
model, tokenizer = load_model("summarize")
# Process abstracts with real-time updates
summaries = []
progress_bar = st.progress(0)
summary_display = st.empty()
for i, (_, row) in enumerate(df.iterrows()):
summary = generate_summary(row['Abstract'], model, tokenizer)
summaries.append(summary)
# Update progress and show current summary
progress = (i + 1) / len(df)
progress_bar.progress(progress)
summary_display.write(f"Processing paper {i+1}/{len(df)}:\n{row['Article Title']}")
st.session_state.summaries = summaries
# Cleanup first model
cleanup_model(model, tokenizer)
except Exception as e:
st.error(f"Error generating summaries: {str(e)}")
# Display summaries with improved sorting
if st.session_state.summaries is not None:
col1, col2 = st.columns(2)
with col1:
sort_options = ['Article Title', 'Authors', 'Publication Year', 'Source Title']
sort_column = st.selectbox("Sort by:", sort_options)
with col2:
ascending = st.checkbox("Ascending order", True)
# Create display dataframe with formatted year
display_df = df.copy()
display_df['Summary'] = st.session_state.summaries
display_df['Publication Year'] = display_df['Publication Year'].astype(int)
sorted_df = display_df.sort_values(by=sort_column, ascending=ascending)
# Apply custom formatting
st.markdown("""
<style>
.stDataFrame {
font-size: 16px;
}
.stDataFrame td {
white-space: normal !important;
padding: 8px !important;
}
</style>
""", unsafe_allow_html=True)
st.dataframe(
sorted_df[['Article Title', 'Authors', 'Source Title',
'Publication Year', 'DOI', 'Summary']],
hide_index=True
)
# Question-focused Summary Section (only if question provided)
if question.strip():
st.header("β Question-focused Summary")
if not st.session_state.get('focused_summary_generated', False):
try:
with st.spinner("Analyzing relevant papers..."):
# Initialize text processor if needed
if st.session_state.text_processor is None:
st.session_state.text_processor = TextProcessor()
# Find relevant abstracts
results = st.session_state.text_processor.find_most_relevant_abstracts(
question,
df['Abstract'].tolist(),
top_k=5
)
# Load question-focused model
model, tokenizer = load_model("question_focused")
# Generate focused summary
relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
focused_summary = generate_focused_summary(
question,
relevant_abstracts,
model,
tokenizer
)
# Store results
st.session_state.focused_summary = focused_summary
st.session_state.relevant_papers = df.iloc[results['top_indices']]
st.session_state.relevance_scores = results['scores']
st.session_state.focused_summary_generated = True
# Cleanup second model
cleanup_model(model, tokenizer)
except Exception as e:
st.error(f"Error generating focused summary: {str(e)}")
# Display focused summary results
if st.session_state.get('focused_summary_generated', False):
st.subheader("Summary")
st.write(st.session_state.focused_summary)
st.subheader("Most Relevant Papers")
relevant_papers = st.session_state.relevant_papers[
['Article Title', 'Authors', 'Publication Year', 'DOI']
].copy()
relevant_papers['Relevance Score'] = st.session_state.relevance_scores
relevant_papers['Publication Year'] = relevant_papers['Publication Year'].astype(int)
st.dataframe(relevant_papers, hide_index=True)
if __name__ == "__main__":
main() |