Spaces:
Sleeping
Sleeping
File size: 23,262 Bytes
60b1427 ba5200e 65d5daa 60b1427 b7bd5a2 1229bf2 60b1427 b7bd5a2 957d2c2 b7bd5a2 b5db7e8 b7bd5a2 2ad2c86 957d2c2 d0820e9 cfd2959 1229bf2 c620786 1bd8049 cfd2959 1bd8049 957d2c2 dde1577 1bd8049 1229bf2 c620786 957d2c2 c620786 2ad2c86 c620786 1bd8049 957d2c2 1bd8049 b7bd5a2 1bd8049 c620786 60b1427 b7bd5a2 60b1427 e1116a3 60b1427 e1116a3 60b1427 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 bb88c28 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 7ab41f7 e1116a3 60b1427 4742b6b e1116a3 4742b6b e1116a3 4742b6b e1116a3 4742b6b e1116a3 4742b6b e1116a3 4742b6b e1116a3 4742b6b e1116a3 4742b6b b25dfc8 e1116a3 4742b6b d0820e9 60b1427 e1116a3 60b1427 e1116a3 60b1427 e1116a3 b7bd5a2 e1116a3 60b1427 6cd4890 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b5db7e8 e1116a3 b5db7e8 770037f b5db7e8 e1116a3 b5db7e8 e1116a3 b5db7e8 4742b6b e1116a3 4742b6b b7bd5a2 234816f 552d5b4 234816f 552d5b4 234816f e1116a3 4742b6b e1116a3 8f96b1c b7bd5a2 8f96b1c b7bd5a2 8f96b1c b7bd5a2 e1116a3 4742b6b 8f96b1c 234816f 8f96b1c 234816f b25dfc8 234816f e1116a3 b7bd5a2 1229bf2 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 60b1427 b7bd5a2 60b1427 b7bd5a2 1229bf2 b7bd5a2 60b1427 e1116a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
import streamlit as st
import pandas as pd
import torch
import re
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from peft import PeftModel
from text_processing import TextProcessor
import gc
from pathlib import Path
# Configure page
st.set_page_config(
page_title="Biomedical Papers Analysis",
page_icon="π¬",
layout="wide"
)
# Initialize session state
if 'processed_data' not in st.session_state:
st.session_state.processed_data = None
if 'summaries' not in st.session_state:
st.session_state.summaries = None
if 'text_processor' not in st.session_state:
st.session_state.text_processor = None
if 'processing_started' not in st.session_state:
st.session_state.processing_started = False
if 'focused_summary_generated' not in st.session_state:
st.session_state.focused_summary_generated = False
def load_model(model_type):
"""Load appropriate model based on type with proper memory management"""
try:
# Clear any existing cached data
gc.collect()
torch.cuda.empty_cache()
device = "cpu" # Force CPU usage
if model_type == "summarize":
# Load the new fine-tuned model directly
model = AutoModelForSeq2SeqLM.from_pretrained(
"pendar02/bart-large-pubmedd",
cache_dir="./models",
torch_dtype=torch.float32
).to(device)
tokenizer = AutoTokenizer.from_pretrained(
"pendar02/bart-large-pubmedd",
cache_dir="./models"
)
else: # question_focused
base_model = AutoModelForSeq2SeqLM.from_pretrained(
"GanjinZero/biobart-base",
cache_dir="./models",
torch_dtype=torch.float32
).to(device)
model = PeftModel.from_pretrained(
base_model,
"pendar02/biobart-finetune",
is_trainable=False
).to(device)
tokenizer = AutoTokenizer.from_pretrained(
"GanjinZero/biobart-base",
cache_dir="./models"
)
model.eval()
return model, tokenizer
except Exception as e:
st.error(f"Error loading model: {str(e)}")
raise
def cleanup_model(model, tokenizer):
"""Properly cleanup model resources"""
try:
del model
del tokenizer
torch.cuda.empty_cache()
gc.collect()
except Exception:
pass
@st.cache_data
def process_excel(uploaded_file):
"""Process uploaded Excel file"""
try:
df = pd.read_excel(uploaded_file)
required_columns = ['Abstract', 'Article Title', 'Authors',
'Source Title', 'Publication Year', 'DOI', 'Times Cited, All Databases']
# Check required columns
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Missing required columns: {', '.join(missing_columns)}")
return None
return df[required_columns]
except Exception as e:
st.error(f"Error processing file: {str(e)}")
return None
def preprocess_text(text):
"""Preprocess text to add appropriate formatting before summarization"""
if not isinstance(text, str) or not text.strip():
return text
# Split text into sentences (basic implementation)
sentences = [s.strip() for s in text.replace('. ', '.\n').split('\n')]
# Remove empty sentences
sentences = [s for s in sentences if s]
# Join with proper line breaks
formatted_text = '\n'.join(sentences)
return formatted_text
def post_process_summary(summary):
"""Clean up and improve summary coherence."""
if not summary:
return summary
# Split into sentences
sentences = [s.strip() for s in summary.split('.')]
sentences = [s for s in sentences if s] # Remove empty sentences
# Correct common issues
processed_sentences = []
for sentence in sentences:
# Remove redundant phrases
sentence = re.sub(r"\b(and and|appointment and appointment)\b", "and", sentence)
# Ensure first letter capitalization
sentence = sentence.capitalize()
# Avoid duplicates
if sentence not in processed_sentences:
processed_sentences.append(sentence)
# Join sentences with proper punctuation
cleaned_summary = '. '.join(processed_sentences)
return cleaned_summary if cleaned_summary.endswith('.') else cleaned_summary + '.'
def improve_summary_generation(text, model, tokenizer):
"""Generate improved summary with better prompt and validation."""
if not isinstance(text, str) or not text.strip():
return "No abstract available to summarize."
# Add a structured prompt for summarization
formatted_text = (
"Summarize this biomedical research abstract into the following structure:\n"
"1. Background and Objectives\n"
"2. Methods\n"
"3. Key Findings (include any percentages or numbers)\n"
"4. Conclusions\n"
f"Abstract:\n{text.strip()}"
)
# Prepare input tokens
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
# Generate summary with adjusted parameters
try:
with torch.no_grad():
summary_ids = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=300, # Increased for more detailed summaries
min_length=100, # Ensure summaries are not too short
num_beams=5,
length_penalty=1.5,
no_repeat_ngram_size=3,
temperature=0.7,
repetition_penalty=1.3,
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
except Exception as e:
return f"Error in generation: {str(e)}"
# Post-process the summary
return post_process_summary(summary)
# Validate the summary
if not validate_summary(processed_summary, text):
# Retry with alternate generation parameters
with torch.no_grad():
summary_ids = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=250,
min_length=50,
num_beams=4,
length_penalty=2.0,
no_repeat_ngram_size=4,
temperature=0.8,
repetition_penalty=1.5,
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
processed_summary = post_process_summary(summary)
return processed_summary
def validate_summary(summary, original_text):
"""Validate summary content against original text."""
# Check for common validation points
if not summary or len(summary.split()) < 20:
return False # Too short
if len(summary.split()) > len(original_text.split()) * 0.8:
return False # Too long
# Ensure structure is maintained (e.g., headings are present)
required_sections = ["background and objectives", "methods", "key findings", "conclusions"]
if not all(section.lower() in summary.lower() for section in required_sections):
return False
# Ensure no repetitive sentences
sentences = summary.split('.')
if len(sentences) != len(set(sentences)):
return False
return True
def generate_focused_summary(question, abstracts, model, tokenizer):
"""Generate focused summary based on question"""
# Preprocess each abstract
formatted_abstracts = [preprocess_text(abstract) for abstract in abstracts]
combined_input = f"Question: {question} Abstracts: " + " [SEP] ".join(formatted_abstracts)
inputs = tokenizer(combined_input, return_tensors="pt", max_length=1024, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": 200,
"min_length": 50,
"num_beams": 4,
"length_penalty": 2.0,
"early_stopping": True
}
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def create_filter_controls(df, sort_column):
"""Create appropriate filter controls based on the selected column"""
filtered_df = df.copy()
if sort_column == 'Publication Year':
# Year range slider
year_min = int(df['Publication Year'].min())
year_max = int(df['Publication Year'].max())
col1, col2 = st.columns(2)
with col1:
start_year = st.number_input('From Year',
min_value=year_min,
max_value=year_max,
value=year_min)
with col2:
end_year = st.number_input('To Year',
min_value=year_min,
max_value=year_max,
value=year_max)
filtered_df = filtered_df[
(filtered_df['Publication Year'] >= start_year) &
(filtered_df['Publication Year'] <= end_year)
]
elif sort_column == 'Authors':
# Multi-select for authors
unique_authors = sorted(set(
author.strip()
for authors in df['Authors'].dropna()
for author in authors.split(';')
))
selected_authors = st.multiselect(
'Select Authors',
unique_authors
)
if selected_authors:
filtered_df = filtered_df[
filtered_df['Authors'].apply(
lambda x: any(author in str(x) for author in selected_authors)
)
]
elif sort_column == 'Source Title':
# Multi-select for source titles
unique_sources = sorted(df['Source Title'].unique())
selected_sources = st.multiselect(
'Select Sources',
unique_sources
)
if selected_sources:
filtered_df = filtered_df[filtered_df['Source Title'].isin(selected_sources)]
elif sort_column == 'Article Title':
# Only alphabetical sorting, no filtering
pass
elif sort_column == 'Times Cited':
# Cited count range slider
cited_min = int(df['Times Cited'].min())
cited_max = int(df['Times Cited'].max())
col1, col2 = st.columns(2)
with col1:
start_cited = st.number_input('From Cited Count',
min_value=cited_min,
max_value=cited_max,
value=cited_min)
with col2:
end_cited = st.number_input('To Cited Count',
min_value=cited_min,
max_value=cited_max,
value=cited_max)
filtered_df = filtered_df[
(filtered_df['Times Cited'] >= start_cited) &
(filtered_df['Times Cited'] <= end_cited)
]
return filtered_df
def main():
st.title("π¬ Biomedical Papers Analysis")
# File upload section
uploaded_file = st.file_uploader(
"Upload Excel file containing papers",
type=['xlsx', 'xls'],
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
)
# Question input - moved up but hidden initially
question_container = st.empty()
question = ""
if uploaded_file is not None:
# Process Excel file
if st.session_state.processed_data is None:
with st.spinner("Processing file..."):
df = process_excel(uploaded_file)
if df is not None:
st.session_state.processed_data = df.dropna(subset=["Abstract"])
if st.session_state.processed_data is not None:
df = st.session_state.processed_data
st.write(f"π Loaded {len(df)} papers with abstracts")
# Get question before processing
with question_container:
question = st.text_input(
"Enter your research question (optional):",
help="If provided, a question-focused summary will be generated after individual summaries"
)
# Single button for both processes
if not st.session_state.get('processing_started', False):
if st.button("Start Analysis"):
st.session_state.processing_started = True
# Show processing status and results
if st.session_state.get('processing_started', False):
# Individual Summaries Section
st.header("π Individual Paper Summaries")
# Generate summaries if not already done
if st.session_state.summaries is None:
try:
with st.spinner("Generating individual paper summaries..."):
model, tokenizer = load_model("summarize")
summaries = []
progress_bar = st.progress(0)
for idx, abstract in enumerate(df['Abstract']):
summary = improve_summary_generation(abstract, model, tokenizer)
summaries.append(summary)
progress_bar.progress((idx + 1) / len(df))
st.session_state.summaries = summaries
cleanup_model(model, tokenizer)
progress_bar.empty()
except Exception as e:
st.error(f"Error generating summaries: {str(e)}")
st.session_state.processing_started = False
# Display summaries with improved sorting and filtering
if st.session_state.summaries is not None:
col1, col2 = st.columns(2)
with col1:
sort_options = ['Article Title', 'Authors', 'Publication Year', 'Source Title', 'Times Cited']
sort_column = st.selectbox("Sort/Filter by:", sort_options)
with col2:
# Only show A-Z/Z-A option for Article Title
if sort_column == 'Article Title':
ascending = st.radio(
"Sort order",
["A to Z", "Z to A"],
horizontal=True
) == "A to Z"
elif sort_column == 'Times Cited':
ascending = st.radio(
"Sort order",
["Most cited", "Least cited"],
horizontal=True
) == "Least cited"
else:
ascending = True # Default for other columns
# Create display dataframe
display_df = df.copy()
display_df['Summary'] = st.session_state.summaries
display_df['Publication Year'] = display_df['Publication Year'].astype(int)
display_df.rename(columns={'Times Cited, All Databases': 'Times Cited'}, inplace=True)
display_df['Times Cited'] = display_df['Times Cited'].fillna(0).astype(int)
# Apply filters
filtered_df = create_filter_controls(display_df, sort_column)
if sort_column == 'Article Title':
# Sort alphabetically
sorted_df = filtered_df.sort_values(by=sort_column, ascending=ascending)
else:
# Keep original order for other columns after filtering
# Keep original order for other columns after filtering
sorted_df = filtered_df
# Show number of filtered results
if len(sorted_df) != len(display_df):
st.write(f"Showing {len(sorted_df)} of {len(display_df)} papers")
# Apply custom styling
st.markdown("""
<style>
.paper-info {
border: 1px solid #ddd;
padding: 15px;
margin-bottom: 20px;
border-radius: 5px;
}
.paper-section {
margin-bottom: 10px;
}
.section-header {
font-weight: bold;
color: #555;
margin-bottom: 8px;
}
.paper-title {
margin-top: 5px;
margin-bottom: 10px;
}
.paper-meta {
font-size: 0.9em;
color: #666;
}
.doi-link {
color: #0366d6;
}
</style>
""", unsafe_allow_html=True)
# Display papers using the filtered and sorted dataframe
for _, row in sorted_df.iterrows():
paper_info_cols = st.columns([1, 1])
with paper_info_cols[0]: # PAPER column
st.markdown('<div class="paper-section"><div class="section-header">PAPER</div>', unsafe_allow_html=True)
st.markdown(f"""
<div class="paper-info">
<div class="paper-title">{row['Article Title']}</div>
<div class="paper-meta">
<strong>Authors:</strong> {row['Authors']}<br>
<strong>Source:</strong> {row['Source Title']}<br>
<strong>Publication Year:</strong> {row['Publication Year']}<br>
<strong>Times Cited:</strong> {row['Times Cited']}<br>
<strong>DOI:</strong> {row['DOI'] if pd.notna(row['DOI']) else 'None'}
</div>
</div>
""", unsafe_allow_html=True)
with paper_info_cols[1]: # SUMMARY column
st.markdown('<div class="paper-section"><div class="section-header">SUMMARY</div>', unsafe_allow_html=True)
st.markdown(f"""
<div class="paper-info">
{row['Summary']}
</div>
""", unsafe_allow_html=True)
# Add spacing between papers
st.markdown("<div style='margin-bottom: 20px;'></div>", unsafe_allow_html=True)
# Question-focused Summary Section (only if question provided)
if question.strip():
st.header("β Question-focused Summary")
if not st.session_state.get('focused_summary_generated', False):
try:
with st.spinner("Analyzing relevant papers..."):
# Initialize text processor if needed
if st.session_state.text_processor is None:
st.session_state.text_processor = TextProcessor()
# Find relevant abstracts
results = st.session_state.text_processor.find_most_relevant_abstracts(
question,
df['Abstract'].tolist(),
top_k=5
)
# Load question-focused model
model, tokenizer = load_model("question_focused")
# Generate focused summary
relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
focused_summary = generate_focused_summary(
question,
relevant_abstracts,
model,
tokenizer
)
# Store results
st.session_state.focused_summary = focused_summary
st.session_state.relevant_papers = df.iloc[results['top_indices']]
st.session_state.relevance_scores = results['scores']
st.session_state.focused_summary_generated = True
# Cleanup second model
cleanup_model(model, tokenizer)
except Exception as e:
st.error(f"Error generating focused summary: {str(e)}")
# Display focused summary results
if st.session_state.get('focused_summary_generated', False):
st.subheader("Summary")
st.write(st.session_state.focused_summary)
st.subheader("Most Relevant Papers")
relevant_papers = st.session_state.relevant_papers[
['Article Title', 'Authors', 'Publication Year', 'DOI']
].copy()
relevant_papers['Relevance Score'] = st.session_state.relevance_scores
relevant_papers['Publication Year'] = relevant_papers['Publication Year'].astype(int)
st.dataframe(relevant_papers, hide_index=True)
if __name__ == "__main__":
main() |