biomedical / app.py
pendar02's picture
Update app.py
cfd2959 verified
raw
history blame
18.1 kB
import streamlit as st
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from peft import PeftModel
from text_processing import TextProcessor
import gc
from pathlib import Path
# Configure page
st.set_page_config(
page_title="Biomedical Papers Analysis",
page_icon="πŸ”¬",
layout="wide"
)
# Initialize session state
if 'processed_data' not in st.session_state:
st.session_state.processed_data = None
if 'summaries' not in st.session_state:
st.session_state.summaries = None
if 'text_processor' not in st.session_state:
st.session_state.text_processor = None
if 'processing_started' not in st.session_state:
st.session_state.processing_started = False
if 'focused_summary_generated' not in st.session_state:
st.session_state.focused_summary_generated = False
def load_model(model_type):
"""Load appropriate model based on type with proper memory management"""
try:
# Clear any existing cached data
gc.collect()
torch.cuda.empty_cache()
device = "cpu" # Force CPU usage
if model_type == "summarize":
model = AutoModelForSeq2SeqLM.from_pretrained(
"pendar02/bart-large-pubmedd",
cache_dir="./models",
torch_dtype=torch.float32
).to(device)
tokenizer = AutoTokenizer.from_pretrained(
"pendar02/bart-large-pubmedd",
cache_dir="./models"
)
else: # question_focused
base_model = AutoModelForSeq2SeqLM.from_pretrained(
"GanjinZero/biobart-base",
cache_dir="./models",
torch_dtype=torch.float32
).to(device)
model = PeftModel.from_pretrained(
base_model,
"pendar02/biobart-finetune",
is_trainable=False
).to(device)
tokenizer = AutoTokenizer.from_pretrained(
"GanjinZero/biobart-base",
cache_dir="./models"
)
model.eval()
return model, tokenizer
except Exception as e:
st.error(f"Error loading model: {str(e)}")
raise
def cleanup_model(model, tokenizer):
"""Properly cleanup model resources"""
try:
del model
del tokenizer
torch.cuda.empty_cache()
gc.collect()
except Exception:
pass
@st.cache_data
def process_excel(uploaded_file):
"""Process uploaded Excel file"""
try:
df = pd.read_excel(uploaded_file)
required_columns = ['Abstract', 'Article Title', 'Authors',
'Source Title', 'Publication Year', 'DOI']
# Check required columns
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Missing required columns: {', '.join(missing_columns)}")
return None
return df[required_columns]
except Exception as e:
st.error(f"Error processing file: {str(e)}")
return None
def preprocess_text(text):
"""Preprocess text to add appropriate formatting before summarization"""
if not isinstance(text, str) or not text.strip():
return text
# Split text into sentences (basic implementation)
sentences = [s.strip() for s in text.replace('. ', '.\n').split('\n')]
# Remove empty sentences
sentences = [s for s in sentences if s]
# Join with proper line breaks
formatted_text = '\n'.join(sentences)
return formatted_text
def post_process_summary(summary):
"""Clean up and improve summary coherence"""
if not summary:
return summary
# Split into sentences
sentences = [s.strip() for s in summary.split('.')]
sentences = [s for s in sentences if s] # Remove empty sentences
# Fix common issues
processed_sentences = []
for i, sentence in enumerate(sentences):
# Remove redundant words/phrases
sentence = sentence.replace(" and and ", " and ")
sentence = sentence.replace("appointment and appointment", "appointment")
# Fix common grammatical issues
sentence = sentence.replace("Cancers distress", "Cancer distress")
sentence = sentence.replace(" ", " ") # Remove double spaces
# Capitalize first letter of each sentence
sentence = sentence.capitalize()
# Add to processed sentences if not empty
if sentence.strip():
processed_sentences.append(sentence)
# Join sentences with proper spacing and punctuation
cleaned_summary = '. '.join(processed_sentences)
if cleaned_summary and not cleaned_summary.endswith('.'):
cleaned_summary += '.'
return cleaned_summary
def improve_summary_generation(text, model, tokenizer):
"""Enhanced version of generate_summary with better parameters and post-processing"""
if not isinstance(text, str) or not text.strip():
return "No abstract available to summarize."
word_count = len(text.split())
if word_count < 50:
return text
formatted_text = preprocess_text(text)
# Adjust generation parameters for better coherence
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": min(200, word_count + 50),
"min_length": min(50, word_count),
"num_beams": 5, # Increased from 4
"length_penalty": 1.5, # Adjusted from 2.0
"early_stopping": True,
"no_repeat_ngram_size": 3,
"temperature": 0.7, # Added temperature for better diversity
"top_p": 0.9, # Added top_p sampling
"repetition_penalty": 1.2 # Added repetition penalty
}
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Apply post-processing
summary = post_process_summary(summary)
# Check if summary is too similar to original
if summary.lower() == text.lower() or len(summary.split()) / word_count > 0.9:
return text
return summary
def generate_focused_summary(question, abstracts, model, tokenizer):
"""Generate focused summary based on question"""
# Preprocess each abstract
formatted_abstracts = [preprocess_text(abstract) for abstract in abstracts]
combined_input = f"Question: {question} Abstracts: " + " [SEP] ".join(formatted_abstracts)
inputs = tokenizer(combined_input, return_tensors="pt", max_length=1024, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": 200,
"min_length": 50,
"num_beams": 4,
"length_penalty": 2.0,
"early_stopping": True
}
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def main():
st.title("πŸ”¬ Biomedical Papers Analysis")
# File upload section
uploaded_file = st.file_uploader(
"Upload Excel file containing papers",
type=['xlsx', 'xls'],
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
)
# Question input - moved up but hidden initially
question_container = st.empty()
question = ""
if uploaded_file is not None:
# Process Excel file
if st.session_state.processed_data is None:
with st.spinner("Processing file..."):
df = process_excel(uploaded_file)
if df is not None:
st.session_state.processed_data = df.dropna(subset=["Abstract"])
if st.session_state.processed_data is not None:
df = st.session_state.processed_data
st.write(f"πŸ“Š Loaded {len(df)} papers with abstracts")
# Get question before processing
with question_container:
question = st.text_input(
"Enter your research question (optional):",
help="If provided, a question-focused summary will be generated after individual summaries"
)
# Single button for both processes
if not st.session_state.get('processing_started', False):
if st.button("Start Analysis"):
st.session_state.processing_started = True
# Show processing status and results
if st.session_state.get('processing_started', False):
# Individual Summaries Section
st.header("πŸ“ Individual Paper Summaries")
# Generate summaries if not already done
if st.session_state.summaries is None:
try:
with st.spinner("Generating individual paper summaries..."):
# Load summarization model
model, tokenizer = load_model("summarize")
# Generate summaries for each abstract
summaries = []
progress_bar = st.progress(0)
for idx, abstract in enumerate(df['Abstract']):
# Replace this line
# summary = generate_summary(abstract, model, tokenizer)
# With this line
summary = improve_summary_generation(abstract, model, tokenizer)
summaries.append(summary)
progress_bar.progress((idx + 1) / len(df))
# Store summaries in session state
st.session_state.summaries = summaries
# Cleanup
cleanup_model(model, tokenizer)
progress_bar.empty()
except Exception as e:
st.error(f"Error generating summaries: {str(e)}")
st.session_state.processing_started = False # Reset to allow retry
# Display summaries with improved sorting
if st.session_state.summaries is not None:
col1, col2 = st.columns(2)
with col1:
sort_options = ['Article Title', 'Authors', 'Publication Year', 'Source Title']
sort_column = st.selectbox("Sort by:", sort_options)
with col2:
ascending = st.checkbox("Ascending order", True)
# Create display dataframe with formatted year
display_df = df.copy()
display_df['Summary'] = st.session_state.summaries
display_df['Publication Year'] = display_df['Publication Year'].astype(int)
sorted_df = display_df.sort_values(by=sort_column, ascending=ascending)
# Apply custom styling
st.markdown("""
<style>
.paper-info {
border: 1px solid #ddd;
padding: 15px;
margin-bottom: 20px;
border-radius: 5px;
}
.paper-section {
margin-bottom: 10px;
}
.section-header {
font-weight: bold;
color: #555;
margin-bottom: 8px;
}
.paper-title {
margin-top: 5px;
margin-bottom: 10px;
}
.paper-meta {
font-size: 0.9em;
color: #666;
}
.doi-link {
color: #0366d6;
}
</style>
""", unsafe_allow_html=True)
# Display papers in side-by-side layout
for _, row in sorted_df.iterrows():
paper_info_cols = st.columns([1, 1])
with paper_info_cols[0]: # PAPER column
st.markdown('<div class="paper-section"><div class="section-header">PAPER</div>', unsafe_allow_html=True)
st.markdown(f"""
<div class="paper-info">
<div class="paper-title">{row['Article Title']}</div>
<div class="paper-meta">
<strong>Authors:</strong> {row['Authors']}<br>
<strong>Source:</strong> {row['Source Title']}<br>
<strong>Publication Year:</strong> {row['Publication Year']}<br>
<strong>DOI:</strong> {row['DOI'] if pd.notna(row['DOI']) else 'None'}
</div>
</div>
""", unsafe_allow_html=True)
with paper_info_cols[1]: # SUMMARY column
st.markdown('<div class="paper-section"><div class="section-header">SUMMARY</div>', unsafe_allow_html=True)
st.markdown(f"""
<div class="paper-info">
{row['Summary']}
</div>
""", unsafe_allow_html=True)
# Add some spacing between papers
st.markdown("<div style='margin-bottom: 20px;'></div>", unsafe_allow_html=True)
# Question-focused Summary Section (only if question provided)
if question.strip():
st.header("❓ Question-focused Summary")
if not st.session_state.get('focused_summary_generated', False):
try:
with st.spinner("Analyzing relevant papers..."):
# Initialize text processor if needed
if st.session_state.text_processor is None:
st.session_state.text_processor = TextProcessor()
# Find relevant abstracts
results = st.session_state.text_processor.find_most_relevant_abstracts(
question,
df['Abstract'].tolist(),
top_k=5
)
# Load question-focused model
model, tokenizer = load_model("question_focused")
# Generate focused summary
relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
focused_summary = generate_focused_summary(
question,
relevant_abstracts,
model,
tokenizer
)
# Store results
st.session_state.focused_summary = focused_summary
st.session_state.relevant_papers = df.iloc[results['top_indices']]
st.session_state.relevance_scores = results['scores']
st.session_state.focused_summary_generated = True
# Cleanup second model
cleanup_model(model, tokenizer)
except Exception as e:
st.error(f"Error generating focused summary: {str(e)}")
# Display focused summary results
if st.session_state.get('focused_summary_generated', False):
st.subheader("Summary")
st.write(st.session_state.focused_summary)
st.subheader("Most Relevant Papers")
relevant_papers = st.session_state.relevant_papers[
['Article Title', 'Authors', 'Publication Year', 'DOI']
].copy()
relevant_papers['Relevance Score'] = st.session_state.relevance_scores
relevant_papers['Publication Year'] = relevant_papers['Publication Year'].astype(int)
st.dataframe(relevant_papers, hide_index=True)
if __name__ == "__main__":
main()