Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -27,103 +27,52 @@ if 'processing_started' not in st.session_state:
|
|
27 |
if 'focused_summary_generated' not in st.session_state:
|
28 |
st.session_state.focused_summary_generated = False
|
29 |
|
30 |
-
def
|
31 |
-
"""
|
32 |
-
|
33 |
-
|
34 |
-
'measurements': [],
|
35 |
-
'demographics': [],
|
36 |
-
'statistical_measures': [],
|
37 |
-
'timeframes': []
|
38 |
-
}
|
39 |
-
|
40 |
-
# P-value patterns
|
41 |
-
p_value_patterns = [
|
42 |
-
r'[pP][\s-]*(?:value)?[\s-]*[=<>]\s*\.?\d+\.?\d*e?-?\d*', # p = 0.001, p<.05, p < 1e-6
|
43 |
-
r'[pP][\s-]*(?:value)?[\s-]*(?:was|of|is|were)\s*\.?\d+\.?\d*e?-?\d*' # p value was 0.001
|
44 |
-
]
|
45 |
-
|
46 |
-
# Statistical measures patterns
|
47 |
-
stat_patterns = [
|
48 |
-
r'(?:CI|confidence interval)[\s:]*(?:\d+\.?\d*%?)?\s*[-–]\s*(?:\d+\.?\d*%?)', # 95% CI: 1.2-3.4
|
49 |
-
r'(?:OR|odds ratio)[\s:]*(?:\d+\.?\d*)', # OR: 1.5
|
50 |
-
r'(?:HR|hazard ratio)[\s:]*(?:\d+\.?\d*)', # HR: 2.1
|
51 |
-
r'(?:RR|relative risk)[\s:]*(?:\d+\.?\d*)', # RR: 1.3
|
52 |
-
r'(?:SD|standard deviation)[\s:]*[±]?\s*\d+\.?\d*' # SD: ±2.1
|
53 |
-
]
|
54 |
-
|
55 |
-
# Measurement patterns
|
56 |
-
measurement_patterns = [
|
57 |
-
r'\d+\.?\d*\s*(?:mg|kg|ml|mmol|µg|ng|mm|cm|µl|g/dl|mmHg)', # Units
|
58 |
-
r'\d+\.?\d*\s*(?:weeks?|months?|years?|hours?|days?)', # Time units
|
59 |
-
r'\d+\.?\d*\s*(?:%|percent|percentage)' # Percentages
|
60 |
-
]
|
61 |
-
|
62 |
-
# Demographic patterns
|
63 |
-
demographic_patterns = [
|
64 |
-
r'(?:mean|median)\s*age[\s:]*(?:was|of|=)?\s*\d+\.?\d*',
|
65 |
-
r'(?:\d+\.?\d*%?\s*(?:men|women|male|female))',
|
66 |
-
r'(?:\d+\.?\d*%?\s*of\s*(?:patients|participants|subjects))',
|
67 |
-
r'(?:[Nn]\s*=\s*\d+)', # Sample size
|
68 |
-
r'(?:aged?\s*\d+[-–]\d+\s*(?:years?|yrs?)?)' # Age range
|
69 |
-
]
|
70 |
-
|
71 |
-
# Extract all patterns
|
72 |
-
for pattern in p_value_patterns:
|
73 |
-
matches = re.finditer(pattern, text, re.IGNORECASE)
|
74 |
-
facts['p_values'].extend([m.group() for m in matches])
|
75 |
-
|
76 |
-
for pattern in stat_patterns:
|
77 |
-
matches = re.finditer(pattern, text, re.IGNORECASE)
|
78 |
-
facts['statistical_measures'].extend([m.group() for m in matches])
|
79 |
-
|
80 |
-
for pattern in measurement_patterns:
|
81 |
-
matches = re.finditer(pattern, text, re.IGNORECASE)
|
82 |
-
facts['measurements'].extend([m.group() for m in matches])
|
83 |
-
|
84 |
-
for pattern in demographic_patterns:
|
85 |
-
matches = re.finditer(pattern, text, re.IGNORECASE)
|
86 |
-
facts['demographics'].extend([m.group() for m in matches])
|
87 |
|
88 |
-
#
|
89 |
-
|
90 |
-
|
91 |
-
r'(?:follow-up|duration)\s*(?:of|was|=)\s*\d+\.?\d*\s*(?:weeks?|months?|years?)',
|
92 |
-
r'\d+[-–]\s*(?:week|month|year)\s*(?:follow-up|period|duration)'
|
93 |
-
]
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
98 |
|
99 |
-
return
|
100 |
|
101 |
-
def
|
102 |
-
"""
|
103 |
-
#
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
}
|
110 |
-
|
111 |
-
# Check if abstract has clear section headers
|
112 |
-
has_sections = any(
|
113 |
-
re.search(f"{pattern}s?:?", text, re.IGNORECASE)
|
114 |
-
for pattern in section_patterns.values()
|
115 |
-
)
|
116 |
-
|
117 |
-
if not has_sections:
|
118 |
-
return "unstructured"
|
119 |
-
|
120 |
-
# Identify present sections
|
121 |
-
present_sections = []
|
122 |
-
for section, pattern in section_patterns.items():
|
123 |
-
if re.search(f"{pattern}s?:?", text, re.IGNORECASE):
|
124 |
-
present_sections.append(section)
|
125 |
-
|
126 |
-
return present_sections
|
127 |
|
128 |
def load_model(model_type):
|
129 |
"""Load appropriate model based on type with proper memory management"""
|
@@ -192,114 +141,47 @@ def process_excel(uploaded_file):
|
|
192 |
st.error(f"Error processing file: {str(e)}")
|
193 |
return None
|
194 |
|
195 |
-
def improve_summary_generation(text, model, tokenizer
|
196 |
"""Generate improved summary with better prompt and validation"""
|
197 |
if not isinstance(text, str) or not text.strip():
|
198 |
return "No abstract available to summarize."
|
199 |
|
200 |
try:
|
201 |
-
#
|
202 |
-
structure = identify_abstract_structure(text)
|
203 |
-
facts = extract_biomedical_facts(text)
|
204 |
-
|
205 |
-
# Build prompt based on structure
|
206 |
-
if structure == "unstructured":
|
207 |
-
section_prompt = (
|
208 |
-
"Organize this unstructured biomedical abstract into clear sections:\n"
|
209 |
-
"1. Background/Objectives\n"
|
210 |
-
"2. Methods\n"
|
211 |
-
"3. Results\n"
|
212 |
-
"4. Conclusions\n\n"
|
213 |
-
)
|
214 |
-
else:
|
215 |
-
section_prompt = "Summarize while maintaining these sections:\n"
|
216 |
-
for section in structure:
|
217 |
-
section_prompt += f"- {section.capitalize()}\n"
|
218 |
-
|
219 |
formatted_text = (
|
220 |
-
|
221 |
-
"
|
222 |
-
"
|
223 |
-
"
|
224 |
-
"
|
225 |
-
"
|
226 |
-
"
|
227 |
-
"- Preserve relationships between variables\n"
|
228 |
-
"- Maintain chronological order of findings\n\n"
|
229 |
-
"Original text:\n" + text
|
230 |
)
|
231 |
|
232 |
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
|
233 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
with torch.no_grad():
|
249 |
-
summary_ids = model.generate(
|
250 |
-
**{
|
251 |
-
"input_ids": inputs["input_ids"],
|
252 |
-
"attention_mask": inputs["attention_mask"],
|
253 |
-
"max_length": 300,
|
254 |
-
"min_length": 100,
|
255 |
-
"num_beams": params["num_beams"],
|
256 |
-
"length_penalty": params["length_penalty"],
|
257 |
-
"no_repeat_ngram_size": 3,
|
258 |
-
"temperature": params["temperature"],
|
259 |
-
"top_k": params["top_k"],
|
260 |
-
"repetition_penalty": 2.5,
|
261 |
-
"do_sample": params["temperature"] > 0.0
|
262 |
-
}
|
263 |
-
)
|
264 |
-
|
265 |
-
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
266 |
-
if not summary:
|
267 |
-
continue
|
268 |
-
|
269 |
-
processed_summary = post_process_summary(summary)
|
270 |
-
if not processed_summary:
|
271 |
-
continue
|
272 |
-
|
273 |
-
# Validate biomedical content
|
274 |
-
summary_facts = extract_biomedical_facts(processed_summary)
|
275 |
-
missing_facts = {k: set(v) - set(summary_facts[k]) for k, v in facts.items()}
|
276 |
-
|
277 |
-
# Calculate score
|
278 |
-
score = 1.0
|
279 |
-
for category, missing in missing_facts.items():
|
280 |
-
if missing:
|
281 |
-
score -= 0.1 * len(missing)
|
282 |
-
|
283 |
-
if score > best_score:
|
284 |
-
best_summary = processed_summary
|
285 |
-
best_score = score
|
286 |
-
|
287 |
-
if score > 0.8:
|
288 |
-
return best_summary
|
289 |
-
|
290 |
-
except Exception as e:
|
291 |
-
print(f"Error in generation attempt: {str(e)}")
|
292 |
-
continue
|
293 |
|
294 |
-
|
295 |
-
parameter_combinations = [
|
296 |
-
{**params,
|
297 |
-
"num_beams": params["num_beams"] + 5,
|
298 |
-
"length_penalty": params["length_penalty"] + 0.5}
|
299 |
-
for params in parameter_combinations
|
300 |
-
]
|
301 |
-
|
302 |
-
return best_summary if best_summary is not None else "Unable to generate a satisfactory summary."
|
303 |
|
304 |
except Exception as e:
|
305 |
print(f"Error in summary generation: {str(e)}")
|
@@ -356,13 +238,12 @@ def post_process_summary(summary):
|
|
356 |
|
357 |
return '\n\n'.join(final_sections)
|
358 |
|
359 |
-
# The rest of your app.py code (main function, UI components, etc.) remains the same...
|
360 |
def validate_summary(summary, original_text):
|
361 |
"""Validate summary content against original text"""
|
362 |
# Perform fact verification
|
363 |
verification = verify_facts(summary, original_text)
|
364 |
|
365 |
-
if not verification
|
366 |
return False
|
367 |
|
368 |
# Check for age inconsistencies
|
@@ -386,34 +267,40 @@ def validate_summary(summary, original_text):
|
|
386 |
|
387 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
388 |
"""Generate focused summary based on question"""
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
|
411 |
def create_filter_controls(df, sort_column):
|
412 |
"""Create appropriate filter controls based on the selected column"""
|
413 |
filtered_df = df.copy()
|
414 |
|
415 |
if sort_column == 'Publication Year':
|
416 |
-
# Year range slider
|
417 |
year_min = int(df['Publication Year'].min())
|
418 |
year_max = int(df['Publication Year'].max())
|
419 |
col1, col2 = st.columns(2)
|
@@ -433,7 +320,6 @@ def create_filter_controls(df, sort_column):
|
|
433 |
]
|
434 |
|
435 |
elif sort_column == 'Authors':
|
436 |
-
# Multi-select for authors
|
437 |
unique_authors = sorted(set(
|
438 |
author.strip()
|
439 |
for authors in df['Authors'].dropna()
|
@@ -451,7 +337,6 @@ def create_filter_controls(df, sort_column):
|
|
451 |
]
|
452 |
|
453 |
elif sort_column == 'Source Title':
|
454 |
-
# Multi-select for source titles
|
455 |
unique_sources = sorted(df['Source Title'].unique())
|
456 |
selected_sources = st.multiselect(
|
457 |
'Select Sources',
|
@@ -460,13 +345,7 @@ def create_filter_controls(df, sort_column):
|
|
460 |
if selected_sources:
|
461 |
filtered_df = filtered_df[filtered_df['Source Title'].isin(selected_sources)]
|
462 |
|
463 |
-
elif sort_column == 'Article Title':
|
464 |
-
# Only alphabetical sorting, no filtering
|
465 |
-
pass
|
466 |
-
|
467 |
-
|
468 |
elif sort_column == 'Times Cited':
|
469 |
-
# Cited count range slider
|
470 |
cited_min = int(df['Times Cited'].min())
|
471 |
cited_max = int(df['Times Cited'].max())
|
472 |
col1, col2 = st.columns(2)
|
@@ -490,19 +369,16 @@ def create_filter_controls(df, sort_column):
|
|
490 |
def main():
|
491 |
st.title("🔬 Biomedical Papers Analysis")
|
492 |
|
493 |
-
# File upload section
|
494 |
uploaded_file = st.file_uploader(
|
495 |
"Upload Excel file containing papers",
|
496 |
type=['xlsx', 'xls'],
|
497 |
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
|
498 |
)
|
499 |
|
500 |
-
# Question input - moved up but hidden initially
|
501 |
question_container = st.empty()
|
502 |
question = ""
|
503 |
|
504 |
if uploaded_file is not None:
|
505 |
-
# Process Excel file
|
506 |
if st.session_state.processed_data is None:
|
507 |
with st.spinner("Processing file..."):
|
508 |
df = process_excel(uploaded_file)
|
@@ -513,15 +389,14 @@ def main():
|
|
513 |
df = st.session_state.processed_data
|
514 |
st.write(f"📊 Loaded {len(df)} papers with abstracts")
|
515 |
|
516 |
-
# Get question before processing
|
517 |
with question_container:
|
518 |
question = st.text_input(
|
519 |
"Enter your research question (optional):",
|
520 |
-
help="If provided, a
|
521 |
)
|
522 |
|
523 |
# Single button for both processes
|
524 |
-
|
525 |
if st.button("Start Analysis"):
|
526 |
st.session_state.processing_started = True
|
527 |
|
|
|
27 |
if 'focused_summary_generated' not in st.session_state:
|
28 |
st.session_state.focused_summary_generated = False
|
29 |
|
30 |
+
def preprocess_text(text):
|
31 |
+
"""Preprocess text for summarization"""
|
32 |
+
if not isinstance(text, str) or not text.strip():
|
33 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
# Clean up whitespace
|
36 |
+
text = re.sub(r'\s+', ' ', text)
|
37 |
+
text = text.strip()
|
|
|
|
|
|
|
38 |
|
39 |
+
# Fix common formatting issues
|
40 |
+
text = re.sub(r'(\d+)\s*%', r'\1%', text) # Fix percentage format
|
41 |
+
text = re.sub(r'\(\s*([Nn])\s*=\s*(\d+)\s*\)', r'(n=\2)', text) # Fix sample size format
|
42 |
+
text = re.sub(r'([Pp])\s*([<>])\s*(\d)', r'\1\2\3', text) # Fix p-value format
|
43 |
|
44 |
+
return text
|
45 |
|
46 |
+
def verify_facts(summary, original_text):
|
47 |
+
"""Verify key facts between summary and original text"""
|
48 |
+
# Extract numbers and percentages
|
49 |
+
def extract_numbers(text):
|
50 |
+
return set(re.findall(r'(\d+\.?\d*)%?', text))
|
51 |
+
|
52 |
+
# Extract relationships
|
53 |
+
def extract_relationships(text):
|
54 |
+
patterns = [
|
55 |
+
r'associated with', r'predicted', r'correlated',
|
56 |
+
r'increased', r'decreased', r'significant'
|
57 |
+
]
|
58 |
+
found = []
|
59 |
+
for pattern in patterns:
|
60 |
+
if re.search(pattern, text.lower()):
|
61 |
+
found.append(pattern)
|
62 |
+
return set(found)
|
63 |
+
|
64 |
+
# Get facts from both texts
|
65 |
+
original_numbers = extract_numbers(original_text)
|
66 |
+
summary_numbers = extract_numbers(summary)
|
67 |
+
original_relations = extract_relationships(original_text)
|
68 |
+
summary_relations = extract_relationships(summary)
|
69 |
+
|
70 |
+
return {
|
71 |
+
'is_valid': summary_numbers.issubset(original_numbers) and
|
72 |
+
summary_relations.issubset(original_relations),
|
73 |
+
'missing_numbers': original_numbers - summary_numbers,
|
74 |
+
'missing_relations': original_relations - summary_relations
|
75 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
def load_model(model_type):
|
78 |
"""Load appropriate model based on type with proper memory management"""
|
|
|
141 |
st.error(f"Error processing file: {str(e)}")
|
142 |
return None
|
143 |
|
144 |
+
def improve_summary_generation(text, model, tokenizer):
|
145 |
"""Generate improved summary with better prompt and validation"""
|
146 |
if not isinstance(text, str) or not text.strip():
|
147 |
return "No abstract available to summarize."
|
148 |
|
149 |
try:
|
150 |
+
# Simplified prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
formatted_text = (
|
152 |
+
"Summarize this biomedical abstract into four sections:\n"
|
153 |
+
"1. Background/Objectives: State the main purpose and population\n"
|
154 |
+
"2. Methods: Describe what was done\n"
|
155 |
+
"3. Key findings: Include ALL numerical results and statistical relationships\n"
|
156 |
+
"4. Conclusions: State main implications\n\n"
|
157 |
+
"Important: Preserve all numbers, measurements, and statistical findings.\n\n"
|
158 |
+
"Text: " + preprocess_text(text)
|
|
|
|
|
|
|
159 |
)
|
160 |
|
161 |
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
|
162 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
163 |
|
164 |
+
# Single generation attempt with optimized parameters
|
165 |
+
with torch.no_grad():
|
166 |
+
summary_ids = model.generate(
|
167 |
+
**{
|
168 |
+
"input_ids": inputs["input_ids"],
|
169 |
+
"attention_mask": inputs["attention_mask"],
|
170 |
+
"max_length": 300,
|
171 |
+
"min_length": 100,
|
172 |
+
"num_beams": 5,
|
173 |
+
"length_penalty": 2.0,
|
174 |
+
"no_repeat_ngram_size": 3,
|
175 |
+
"temperature": 0.3,
|
176 |
+
"repetition_penalty": 2.5
|
177 |
+
}
|
178 |
+
)
|
179 |
|
180 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
181 |
+
if not summary:
|
182 |
+
return "Error: Could not generate summary."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
+
return post_process_summary(summary)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
except Exception as e:
|
187 |
print(f"Error in summary generation: {str(e)}")
|
|
|
238 |
|
239 |
return '\n\n'.join(final_sections)
|
240 |
|
|
|
241 |
def validate_summary(summary, original_text):
|
242 |
"""Validate summary content against original text"""
|
243 |
# Perform fact verification
|
244 |
verification = verify_facts(summary, original_text)
|
245 |
|
246 |
+
if not verification.get('is_valid', False):
|
247 |
return False
|
248 |
|
249 |
# Check for age inconsistencies
|
|
|
267 |
|
268 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
269 |
"""Generate focused summary based on question"""
|
270 |
+
try:
|
271 |
+
# Preprocess each abstract
|
272 |
+
formatted_abstracts = [preprocess_text(abstract) for abstract in abstracts]
|
273 |
+
combined_input = f"Question: {question}\nSummarize these abstracts to answer the question:\n" + \
|
274 |
+
"\n---\n".join(formatted_abstracts)
|
275 |
+
|
276 |
+
inputs = tokenizer(combined_input, return_tensors="pt", max_length=1024, truncation=True)
|
277 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
278 |
+
|
279 |
+
with torch.no_grad():
|
280 |
+
summary_ids = model.generate(
|
281 |
+
**{
|
282 |
+
"input_ids": inputs["input_ids"],
|
283 |
+
"attention_mask": inputs["attention_mask"],
|
284 |
+
"max_length": 300,
|
285 |
+
"min_length": 100,
|
286 |
+
"num_beams": 5,
|
287 |
+
"length_penalty": 2.0,
|
288 |
+
"temperature": 0.3,
|
289 |
+
"repetition_penalty": 2.5
|
290 |
+
}
|
291 |
+
)
|
292 |
+
|
293 |
+
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
294 |
+
|
295 |
+
except Exception as e:
|
296 |
+
print(f"Error in focused summary generation: {str(e)}")
|
297 |
+
return "Error generating focused summary."
|
298 |
|
299 |
def create_filter_controls(df, sort_column):
|
300 |
"""Create appropriate filter controls based on the selected column"""
|
301 |
filtered_df = df.copy()
|
302 |
|
303 |
if sort_column == 'Publication Year':
|
|
|
304 |
year_min = int(df['Publication Year'].min())
|
305 |
year_max = int(df['Publication Year'].max())
|
306 |
col1, col2 = st.columns(2)
|
|
|
320 |
]
|
321 |
|
322 |
elif sort_column == 'Authors':
|
|
|
323 |
unique_authors = sorted(set(
|
324 |
author.strip()
|
325 |
for authors in df['Authors'].dropna()
|
|
|
337 |
]
|
338 |
|
339 |
elif sort_column == 'Source Title':
|
|
|
340 |
unique_sources = sorted(df['Source Title'].unique())
|
341 |
selected_sources = st.multiselect(
|
342 |
'Select Sources',
|
|
|
345 |
if selected_sources:
|
346 |
filtered_df = filtered_df[filtered_df['Source Title'].isin(selected_sources)]
|
347 |
|
|
|
|
|
|
|
|
|
|
|
348 |
elif sort_column == 'Times Cited':
|
|
|
349 |
cited_min = int(df['Times Cited'].min())
|
350 |
cited_max = int(df['Times Cited'].max())
|
351 |
col1, col2 = st.columns(2)
|
|
|
369 |
def main():
|
370 |
st.title("🔬 Biomedical Papers Analysis")
|
371 |
|
|
|
372 |
uploaded_file = st.file_uploader(
|
373 |
"Upload Excel file containing papers",
|
374 |
type=['xlsx', 'xls'],
|
375 |
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
|
376 |
)
|
377 |
|
|
|
378 |
question_container = st.empty()
|
379 |
question = ""
|
380 |
|
381 |
if uploaded_file is not None:
|
|
|
382 |
if st.session_state.processed_data is None:
|
383 |
with st.spinner("Processing file..."):
|
384 |
df = process_excel(uploaded_file)
|
|
|
389 |
df = st.session_state.processed_data
|
390 |
st.write(f"📊 Loaded {len(df)} papers with abstracts")
|
391 |
|
|
|
392 |
with question_container:
|
393 |
question = st.text_input(
|
394 |
"Enter your research question (optional):",
|
395 |
+
help="If provided, a focused summary will be generated after individual summaries"
|
396 |
)
|
397 |
|
398 |
# Single button for both processes
|
399 |
+
if not st.session_state.get('processing_started', False):
|
400 |
if st.button("Start Analysis"):
|
401 |
st.session_state.processing_started = True
|
402 |
|