Spaces:
Runtime error
Runtime error
File size: 14,031 Bytes
a875c68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
from typing import Dict
import numpy as np
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
from einops import rearrange, repeat
from typing import Literal, Tuple, Optional, Any
import cv2
import random
import json
import os, sys
import math
from PIL import Image, ImageOps
from normal_utils import worldNormal2camNormal, plot_grid_images, img2normal, norm_normalize, deg2rad
import pdb
from icecream import ic
def shift_list(lst, n):
length = len(lst)
n = n % length # Ensure n is within the range of the list length
return lst[-n:] + lst[:-n]
class ObjaverseDataset(Dataset):
def __init__(self,
root_dir: str,
azi_interval: float,
random_views: int,
predict_relative_views: list,
bg_color: Any,
object_list: str,
prompt_embeds_path: str,
img_wh: Tuple[int, int],
validation: bool = False,
num_validation_samples: int = 64,
num_samples: Optional[int] = None,
invalid_list: Optional[str] = None,
trans_norm_system: bool = True, # if True, transform all normals map into the cam system of front view
# augment_data: bool = False,
side_views_rate: float = 0.,
read_normal: bool = True,
read_color: bool = False,
read_depth: bool = False,
mix_color_normal: bool = False,
random_view_and_domain: bool = False,
load_cache: bool = False,
exten: str = '.png',
elevation_list: Optional[str] = None,
) -> None:
"""Create a dataset from a folder of images.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
self.root_dir = root_dir
self.fixed_views = int(360 // azi_interval)
self.bg_color = bg_color
self.validation = validation
self.num_samples = num_samples
self.trans_norm_system = trans_norm_system
# self.augment_data = augment_data
self.invalid_list = invalid_list
self.img_wh = img_wh
self.read_normal = read_normal
self.read_color = read_color
self.read_depth = read_depth
self.mix_color_normal = mix_color_normal # mix load color and normal maps
self.random_view_and_domain = random_view_and_domain # load normal or rgb of a single view
self.random_views = random_views
self.load_cache = load_cache
self.total_views = int(self.fixed_views * (self.random_views + 1))
self.predict_relative_views = predict_relative_views
self.pred_view_nums = len(self.predict_relative_views)
self.exten = exten
self.side_views_rate = side_views_rate
# ic(self.augment_data)
ic(self.total_views)
ic(self.fixed_views)
ic(self.predict_relative_views)
self.objects = []
if object_list is not None:
for dataset_list in object_list:
with open(dataset_list, 'r') as f:
# objects = f.readlines()
# objects = [o.strip() for o in objects]
objects = json.load(f)
self.objects.extend(objects)
else:
self.objects = os.listdir(self.root_dir)
# load fixed camera poses
self.trans_cv2gl_mat = np.linalg.inv(np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]]))
self.fix_cam_poses = []
camera_path = os.path.join(self.root_dir, self.objects[0], 'camera')
for vid in range(0, self.total_views, self.random_views+1):
cam_info = np.load(f'{camera_path}/{vid:03d}.npy', allow_pickle=True).item()
assert cam_info['camera'] == 'ortho', 'Only support predict ortho camera !!!'
self.fix_cam_poses.append(cam_info['extrinsic'])
random.shuffle(self.objects)
# import pdb; pdb.set_trace()
invalid_objects = []
if self.invalid_list is not None:
for invalid_list in self.invalid_list:
if invalid_list[-4:] == '.txt':
with open(invalid_list, 'r') as f:
sub_invalid = f.readlines()
invalid_objects.extend([o.strip() for o in sub_invalid])
else:
with open(invalid_list) as f:
invalid_objects.extend(json.load(f))
self.invalid_objects = invalid_objects
ic(len(self.invalid_objects))
if elevation_list:
with open(elevation_list, 'r') as f:
ele_list = [o.strip() for o in f.readlines()]
self.objects = set(ele_list) & set(self.objects)
self.all_objects = set(self.objects) - (set(self.invalid_objects) & set(self.objects))
self.all_objects = list(self.all_objects)
self.validation = validation
if not validation:
self.all_objects = self.all_objects[:-num_validation_samples]
# print('Warning: you are fitting in small-scale dataset')
# self.all_objects = self.all_objects
else:
self.all_objects = self.all_objects[-num_validation_samples:]
if num_samples is not None:
self.all_objects = self.all_objects[:num_samples]
ic(len(self.all_objects))
print("loading ", len(self.all_objects), " objects in the dataset")
self.normal_prompt_embedding = torch.load(f'{prompt_embeds_path}/normal_embeds.pt')
self.color_prompt_embedding = torch.load(f'{prompt_embeds_path}/clr_embeds.pt')
if self.mix_color_normal:
self.backup_data = self.__getitem_mix__(0, '8609cf7e67bf413487a7d94c73aeaa3e')
else:
self.backup_data = self.__getitem_norm__(0, '8609cf7e67bf413487a7d94c73aeaa3e')
def trans_cv2gl(self, rt):
r, t = rt[:3, :3], rt[:3, -1]
r = np.matmul(self.trans_cv2gl_mat, r)
t = np.matmul(self.trans_cv2gl_mat, t)
return np.concatenate([r, t[:, None]], axis=-1)
def get_bg_color(self):
if self.bg_color == 'white':
bg_color = np.array([1., 1., 1.], dtype=np.float32)
elif self.bg_color == 'black':
bg_color = np.array([0., 0., 0.], dtype=np.float32)
elif self.bg_color == 'gray':
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
elif self.bg_color == 'random':
bg_color = np.random.rand(3)
elif self.bg_color == 'three_choices':
white = np.array([1., 1., 1.], dtype=np.float32)
black = np.array([0., 0., 0.], dtype=np.float32)
gray = np.array([0.5, 0.5, 0.5], dtype=np.float32)
bg_color = random.choice([white, black, gray])
elif isinstance(self.bg_color, float):
bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
else:
raise NotImplementedError
return bg_color
def load_image(self, img_path, bg_color, alpha=None, return_type='np'):
# not using cv2 as may load in uint16 format
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
# pil always returns uint8
rgba = np.array(Image.open(img_path).resize(self.img_wh))
rgba = rgba.astype(np.float32) / 255. # [0, 1]
img = rgba[..., :3]
if alpha is None:
assert rgba.shape[-1] == 4
alpha = rgba[..., 3:4]
assert alpha.sum() > 1e-8, 'w/o foreground'
img = img[...,:3] * alpha + bg_color * (1 - alpha)
if return_type == "np":
pass
elif return_type == "pt":
img = torch.from_numpy(img)
alpha = torch.from_numpy(alpha)
else:
raise NotImplementedError
return img, alpha
def load_depth(self, img_path, bg_color, alpha, input_type='png', return_type='np'):
# not using cv2 as may load in uint16 format
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
# pil always returns uint8
img = np.array(Image.open(img_path).resize(self.img_wh))
img = img.astype(np.float32) / 65535. # [0, 1]
img[img > 0.4] = 0
img = img / 0.4
assert img.ndim == 2 # depth
img = np.stack([img]*3, axis=-1)
if alpha.shape[-1] != 1:
alpha = alpha[:, :, None]
# print(np.max(img[:, :, 0]))
img = img[...,:3] * alpha + bg_color * (1 - alpha)
if return_type == "np":
pass
elif return_type == "pt":
img = torch.from_numpy(img)
else:
raise NotImplementedError
return img
def load_normal(self, img_path, bg_color, alpha, RT_w2c_cond=None, return_type='np'):
normal_np = np.array(Image.open(img_path).resize(self.img_wh))[:, :, :3]
assert np.var(normal_np) > 1e-8, 'pure normal'
normal_cv = img2normal(normal_np)
normal_relative_cv = worldNormal2camNormal(RT_w2c_cond[:3, :3], normal_cv)
normal_relative_cv = norm_normalize(normal_relative_cv)
# normal_relative_gl = normal_relative_cv[..., [ 0, 2, 1]]
# normal_relative_gl[..., 2] = -normal_relative_gl[..., 2]
normal_relative_gl = normal_relative_cv
normal_relative_gl[..., 1:] = -normal_relative_gl[..., 1:]
img = (normal_relative_cv*0.5 + 0.5).astype(np.float32) # [0, 1]
if alpha.shape[-1] != 1:
alpha = alpha[:, :, None]
img = img[...,:3] * alpha + bg_color * (1 - alpha)
if return_type == "np":
pass
elif return_type == "pt":
img = torch.from_numpy(img)
else:
raise NotImplementedError
return img
def __len__(self):
return len(self.all_objects)
def __getitem_norm__(self, index, debug_object=None):
# get the bg color
bg_color = self.get_bg_color()
if debug_object is not None:
object_name = debug_object
else:
object_name = self.all_objects[index % len(self.all_objects)]
if self.validation:
cond_ele0_idx = 12
else:
rand = random.random()
if rand < self.side_views_rate: # 0.1
cond_ele0_idx = random.sample([8, 0], 1)[0]
elif rand < 3 * self.side_views_rate: # 0.3
cond_ele0_idx = random.sample([10, 14], 1)[0]
else:
cond_ele0_idx = 12 # front view
cond_random_idx = random.sample(range(self.random_views+1), 1)[0]
# condition info
cond_ele0_vid = cond_ele0_idx * (self.random_views + 1)
cond_vid = cond_ele0_vid + cond_random_idx
cond_ele0_w2c = self.fix_cam_poses[cond_ele0_idx]
cond_info = np.load(f'{self.root_dir}/{object_name}/camera/{cond_vid:03d}.npy', allow_pickle=True).item()
cond_type = cond_info['camera']
focal_len = cond_info['focal']
cond_eles = np.array([deg2rad(cond_info['elevation'])])
img_tensors_in = [
self.load_image(f"{self.root_dir}/{object_name}/image/{cond_vid:03d}{self.exten}", bg_color, return_type='pt')[0].permute(2, 0, 1)
] * self.pred_view_nums
# output info
pred_vids = [(cond_ele0_vid + i * (self.random_views+1)) % self.total_views for i in self.predict_relative_views]
# pred_w2cs = [self.fix_cam_poses[(cond_ele0_idx + i) % self.fixed_views] for i in self.predict_relative_views]
img_tensors_out = []
normal_tensors_out = []
for i, vid in enumerate(pred_vids):
try:
img_tensor, alpha_ = self.load_image(f"{self.root_dir}/{object_name}/image/{vid:03d}{self.exten}", bg_color, return_type='pt')
except:
img_tensor, alpha_ = self.load_image(f"{self.root_dir}/{object_name}/image_relit/{vid:03d}{self.exten}", bg_color, return_type='pt')
img_tensor = img_tensor.permute(2, 0, 1) # (3, H, W)
img_tensors_out.append(img_tensor)
normal_tensor = self.load_normal(f"{self.root_dir}/{object_name}/normal/{vid:03d}{self.exten}", bg_color, alpha_.numpy(), RT_w2c_cond=cond_ele0_w2c[:3, :], return_type="pt").permute(2, 0, 1)
normal_tensors_out.append(normal_tensor)
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
normal_tensors_out = torch.stack(normal_tensors_out, dim=0).float() # (Nv, 3, H, W)
elevations_cond = torch.as_tensor(cond_eles).float()
if cond_type == 'ortho':
focal_embed = torch.tensor([0.])
else:
focal_embed = torch.tensor([24./focal_len])
if not self.load_cache:
return {
'elevations_cond': elevations_cond,
'focal_cond': focal_embed,
'id': object_name,
'vid':cond_vid,
'imgs_in': img_tensors_in,
'imgs_out': img_tensors_out,
'normals_out': normal_tensors_out,
'normal_prompt_embeddings': self.normal_prompt_embedding,
'color_prompt_embeddings': self.color_prompt_embedding
}
def __getitem__(self, index):
try:
return self.__getitem_norm__(index)
except:
print("load error ", self.all_objects[index%len(self.all_objects)] )
return self.backup_data
|