Spaces:
Runtime error
Runtime error
pengHTYX
commited on
Commit
•
501a6cc
1
Parent(s):
4799ad7
'update'
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import fire
|
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
from functools import partial
|
7 |
-
|
8 |
import cv2
|
9 |
import time
|
10 |
import numpy as np
|
@@ -62,16 +62,16 @@ _GPU_ID = 0
|
|
62 |
if not hasattr(Image, 'Resampling'):
|
63 |
Image.Resampling = Image
|
64 |
|
65 |
-
|
66 |
def sam_init():
|
67 |
sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_h_4b8939.pth")
|
68 |
model_type = "vit_h"
|
69 |
|
70 |
-
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=
|
71 |
predictor = SamPredictor(sam)
|
72 |
return predictor
|
73 |
|
74 |
-
|
75 |
def sam_segment(predictor, input_image, *bbox_coords):
|
76 |
bbox = np.array(bbox_coords)
|
77 |
image = np.asarray(input_image)
|
@@ -143,7 +143,7 @@ def preprocess(predictor, input_image, chk_group=None, segment=True, rescale=Fal
|
|
143 |
input_image = expand2square(input_image, (127, 127, 127, 0))
|
144 |
return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS)
|
145 |
|
146 |
-
|
147 |
def load_era3d_pipeline(cfg):
|
148 |
# Load scheduler, tokenizer and models.
|
149 |
|
@@ -153,7 +153,7 @@ def load_era3d_pipeline(cfg):
|
|
153 |
)
|
154 |
|
155 |
if torch.cuda.is_available():
|
156 |
-
pipeline.to('cuda
|
157 |
pipeline.unet.enable_xformers_memory_efficient_attention()
|
158 |
# sys.main_lock = threading.Lock()
|
159 |
return pipeline
|
@@ -168,7 +168,7 @@ def prepare_data(single_image, crop_size, cfg):
|
|
168 |
return dataset[0]
|
169 |
|
170 |
scene = 'scene'
|
171 |
-
|
172 |
def run_pipeline(pipeline, cfg, single_image, guidance_scale, steps, seed, crop_size, chk_group=None):
|
173 |
import pdb
|
174 |
global scene
|
@@ -302,7 +302,7 @@ def run_demo():
|
|
302 |
|
303 |
pipeline = load_era3d_pipeline(cfg)
|
304 |
torch.set_grad_enabled(False)
|
305 |
-
pipeline.to(
|
306 |
|
307 |
predictor = sam_init()
|
308 |
|
|
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
from functools import partial
|
7 |
+
+import spaces
|
8 |
import cv2
|
9 |
import time
|
10 |
import numpy as np
|
|
|
62 |
if not hasattr(Image, 'Resampling'):
|
63 |
Image.Resampling = Image
|
64 |
|
65 | |
66 |
def sam_init():
|
67 |
sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_h_4b8939.pth")
|
68 |
model_type = "vit_h"
|
69 |
|
70 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device="cuda")
|
71 |
predictor = SamPredictor(sam)
|
72 |
return predictor
|
73 |
|
74 | |
75 |
def sam_segment(predictor, input_image, *bbox_coords):
|
76 |
bbox = np.array(bbox_coords)
|
77 |
image = np.asarray(input_image)
|
|
|
143 |
input_image = expand2square(input_image, (127, 127, 127, 0))
|
144 |
return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS)
|
145 |
|
146 | |
147 |
def load_era3d_pipeline(cfg):
|
148 |
# Load scheduler, tokenizer and models.
|
149 |
|
|
|
153 |
)
|
154 |
|
155 |
if torch.cuda.is_available():
|
156 |
+
pipeline.to('cuda')
|
157 |
pipeline.unet.enable_xformers_memory_efficient_attention()
|
158 |
# sys.main_lock = threading.Lock()
|
159 |
return pipeline
|
|
|
168 |
return dataset[0]
|
169 |
|
170 |
scene = 'scene'
|
171 | |
172 |
def run_pipeline(pipeline, cfg, single_image, guidance_scale, steps, seed, crop_size, chk_group=None):
|
173 |
import pdb
|
174 |
global scene
|
|
|
302 |
|
303 |
pipeline = load_era3d_pipeline(cfg)
|
304 |
torch.set_grad_enabled(False)
|
305 |
+
pipeline.to('cuda')
|
306 |
|
307 |
predictor = sam_init()
|
308 |
|