from transformers import CLIPTokenizer, CLIPTextModel import torch import os root = '/mnt/data/lipeng/' pretrained_model_name_or_path = 'stabilityai/stable-diffusion-2-1-unclip' weight_dtype = torch.float16 device = torch.device("cuda:0") tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer") text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder') text_encoder = text_encoder.to(device, dtype=weight_dtype) def generate_mv_embeds(): path = './fixed_prompt_embeds_8view' os.makedirs(path, exist_ok=True) views = ["front", "front_right", "right", "back_right", "back", " back_left", "left", "front_left"] # views = ["front", "front_right", "right", "back", "left", "front_left"] # views = ["front", "right", "back", "left"] clr_prompt = [f"a rendering image of 3D models, {view} view, color map." for view in views] normal_prompt = [f"a rendering image of 3D models, {view} view, normal map." for view in views] for id, text_prompt in enumerate([clr_prompt, normal_prompt]): print(text_prompt) text_inputs = tokenizer(text_prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt").to(device) text_input_ids = text_inputs.input_ids untruncated_ids = tokenizer(text_prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids): removed_text = tokenizer.batch_decode( untruncated_ids[:, tokenizer.model_max_length - 1 : -1] ) if hasattr(text_encoder.config, "use_attention_mask") and text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=attention_mask,) prompt_embeds = prompt_embeds[0].detach().cpu() print(prompt_embeds.shape) # print(prompt_embeds.dtype) if id == 0: torch.save(prompt_embeds, f'./{path}/clr_embeds.pt') else: torch.save(prompt_embeds, f'./{path}/normal_embeds.pt') print('done') def generate_img_embeds(): path = './fixed_prompt_embeds_persp2ortho' os.makedirs(path, exist_ok=True) text_prompt = ["a orthogonal renderining image of 3D models"] print(text_prompt) text_inputs = tokenizer(text_prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt").to(device) text_input_ids = text_inputs.input_ids untruncated_ids = tokenizer(text_prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids): removed_text = tokenizer.batch_decode( untruncated_ids[:, tokenizer.model_max_length - 1 : -1] ) if hasattr(text_encoder.config, "use_attention_mask") and text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=attention_mask,) prompt_embeds = prompt_embeds[0].detach().cpu() print(prompt_embeds.shape) # print(prompt_embeds.dtype) torch.save(prompt_embeds, f'./{path}/embeds.pt') print('done') generate_img_embeds()